Add another camera project and a video detection alg
This commit is contained in:
parent
d900f956db
commit
57f8e55d2a
BIN
camera/ML-Models/MobileNetSSD_deploy.caffemodel
Normal file
BIN
camera/ML-Models/MobileNetSSD_deploy.caffemodel
Normal file
Binary file not shown.
1912
camera/ML-Models/MobileNetSSD_deploy.prototxt
Normal file
1912
camera/ML-Models/MobileNetSSD_deploy.prototxt
Normal file
File diff suppressed because it is too large
Load Diff
18
camera/new_camera.py
Normal file
18
camera/new_camera.py
Normal file
@ -0,0 +1,18 @@
|
||||
"""from time import sleep
|
||||
from picamera import PiCamera
|
||||
|
||||
camera = PiCamera()
|
||||
camera.resolution = (1024, 768)
|
||||
camera.start_preview()
|
||||
# Camera warm-up time
|
||||
sleep(2)
|
||||
camera.capture('foo.jpg')
|
||||
|
||||
"""
|
||||
import picamera
|
||||
|
||||
camera = picamera.PiCamera()
|
||||
camera.resolution = (640, 480)
|
||||
camera.start_recording('my_video.h264')
|
||||
camera.wait_recording(60)
|
||||
camera.stop_recording()
|
202
camera/video_presence.py
Normal file
202
camera/video_presence.py
Normal file
@ -0,0 +1,202 @@
|
||||
from imutils.video import VideoStream
|
||||
from imutils.video import FPS
|
||||
import argparse
|
||||
import imutils
|
||||
import time
|
||||
import cv2
|
||||
from datetime import datetime, time
|
||||
import numpy as np
|
||||
import time as time2
|
||||
|
||||
""" Arguments """
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-v", "--video", help="path to the video file")
|
||||
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
|
||||
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type")
|
||||
args = vars(ap.parse_args())
|
||||
|
||||
""" Determine opencv version and select tracker """
|
||||
# extract the OpenCV version info
|
||||
(major, minor) = cv2.__version__.split(".")[:2]
|
||||
# if we are using OpenCV 3.2 or an earlier version, we can use a special factory
|
||||
# function to create the entity that tracks objects
|
||||
if int(major) == 3 and int(minor) < 3:
|
||||
tracker = cv2.Tracker_create(args["tracker"].upper())
|
||||
#tracker = cv2.TrackerGOTURN_create()
|
||||
# otherwise, for OpenCV 3.3 or newer,
|
||||
# we need to explicity call the respective constructor that contains the tracker object:
|
||||
else:
|
||||
# initialize a dictionary that maps strings to their corresponding
|
||||
# OpenCV object tracker implementations
|
||||
OPENCV_OBJECT_TRACKERS = {
|
||||
"csrt": cv2.TrackerCSRT_create,
|
||||
"kcf": cv2.TrackerKCF_create,
|
||||
"boosting": cv2.TrackerBoosting_create,
|
||||
"mil": cv2.TrackerMIL_create,
|
||||
"tld": cv2.TrackerTLD_create,
|
||||
"medianflow": cv2.TrackerMedianFlow_create,
|
||||
"mosse": cv2.TrackerMOSSE_create
|
||||
}
|
||||
# grab the appropriate object tracker using our dictionary of
|
||||
# OpenCV object tracker objects
|
||||
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
|
||||
#tracker = cv2.TrackerGOTURN_create()
|
||||
# if the video argument is None, then the code will read from webcam (work in progress)
|
||||
if args.get("video", None) is None:
|
||||
vs = VideoStream(src=0).start()
|
||||
time2.sleep(2.0)
|
||||
# otherwise, we are reading from a video file
|
||||
else:
|
||||
vs = cv2.VideoCapture(args["video"])
|
||||
|
||||
"""" Analyzing video frames """
|
||||
# loop over the frames of the video, and store corresponding information from each frame
|
||||
firstFrame = None
|
||||
initBB2 = None
|
||||
fps = None
|
||||
differ = None
|
||||
now = ''
|
||||
framecounter = 0
|
||||
trackeron = 0
|
||||
|
||||
while True:
|
||||
frame = vs.read()
|
||||
frame = frame if args.get("video", None) is None else frame[1]
|
||||
# if the frame can not be grabbed, then we have reached the end of the video
|
||||
if frame is None:
|
||||
break
|
||||
|
||||
# resize the frame to 500
|
||||
frame = imutils.resize(frame, width=500)
|
||||
|
||||
framecounter = framecounter+1
|
||||
if framecounter > 1:
|
||||
|
||||
(H, W) = frame.shape[:2]
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
# if the first frame is None, initialize it
|
||||
if firstFrame is None:
|
||||
firstFrame = gray
|
||||
continue
|
||||
|
||||
# compute the absolute difference between the current frame and first frame
|
||||
frameDelta = cv2.absdiff(firstFrame, gray)
|
||||
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
|
||||
|
||||
# loop over the contours identified
|
||||
contourcount = 0
|
||||
for c in cnts:
|
||||
contourcount = contourcount + 1
|
||||
|
||||
# if the contour is too small, ignore it
|
||||
if cv2.contourArea(c) < args["min_area"]:
|
||||
continue
|
||||
|
||||
# compute the bounding box for the contour, draw it on the frame,
|
||||
(x, y, w, h) = cv2.boundingRect(c)
|
||||
initBB2 =(x,y,w,h)
|
||||
|
||||
prott1 = r'ML-Models\MobileNetSSD_deploy.prototxt'
|
||||
prott2 = r'ML-Models\MobileNetSSD_deploy.caffemodel'
|
||||
net = cv2.dnn.readNetFromCaffe(prott1, prott2)
|
||||
|
||||
CLASSES = ["person"]
|
||||
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
||||
|
||||
trackbox = frame[y:y+h, x:x+w]
|
||||
trackbox = cv2.resize(trackbox, (224, 224))
|
||||
cv2.imshow('image',trackbox)
|
||||
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
|
||||
net.setInput(blob)
|
||||
detections = net.forward()
|
||||
|
||||
for i in np.arange(0, detections.shape[2]):
|
||||
confidence = detections[0, 0, i, 2]
|
||||
|
||||
confidence_level = 0.7
|
||||
|
||||
if confidence > confidence_level:
|
||||
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
|
||||
# the bounding box for the object
|
||||
idx = int(detections[0, 0, i, 1])
|
||||
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
||||
(startX, startY, endX, endY) = box.astype("int")
|
||||
# draw the prediction on the frame
|
||||
label = "{}: {:.2f}%".format(CLASSES[idx],
|
||||
confidence * 100)
|
||||
cv2.rectangle(frame, (startX, startY), (endX, endY),
|
||||
COLORS[idx], 2)
|
||||
y = startY - 15 if startY - 15 > 15 else startY + 15
|
||||
cv2.putText(frame, label, (startX, y),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
||||
|
||||
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)
|
||||
# Start tracker
|
||||
now = datetime.now()
|
||||
if differ == None or differ > 9:
|
||||
tracker.init(frame, initBB2)
|
||||
fps = FPS().start()
|
||||
|
||||
|
||||
# check to see if we are currently tracking an object, if so, ignore other boxes
|
||||
# this code is relevant if we want to identify particular persons (section 2 of this tutorial)
|
||||
if initBB2 is not None:
|
||||
|
||||
# grab the new bounding box coordinates of the object
|
||||
(success, box) = tracker.update(frame)
|
||||
|
||||
# check to see if the tracking was a success
|
||||
differ = 10
|
||||
if success:
|
||||
(x, y, w, h) = [int(v) for v in box]
|
||||
cv2.rectangle(frame, (x, y), (x + w, y + h),(0, 255, 0), 2)
|
||||
differ = abs(initBB2[0]-box[0]) + abs(initBB2[1]-box[1])
|
||||
i = tracker.update(lastframe)
|
||||
if i[0] != True:
|
||||
time2.sleep(4000)
|
||||
else:
|
||||
trackeron = 1
|
||||
|
||||
# update the FPS counter
|
||||
fps.update()
|
||||
fps.stop()
|
||||
|
||||
# initialize the set of information we'll be displaying on
|
||||
# the frame
|
||||
info = [
|
||||
("Success", "Yes" if success else "No"),
|
||||
("FPS", "{:.2f}".format(fps.fps())),
|
||||
]
|
||||
|
||||
# loop over the info tuples and draw them on our frame
|
||||
for (i, (k, v)) in enumerate(info):
|
||||
text = "{}: {}".format(k, v)
|
||||
cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
|
||||
|
||||
# draw the text and timestamp on the frame
|
||||
now2 = datetime.now()
|
||||
time_passed_seconds = str((now2-now).seconds)
|
||||
cv2.putText(frame, 'Detecting persons',(10, 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||
|
||||
# show the frame and record if the user presses a key
|
||||
cv2.imshow("Video stream", frame)
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
|
||||
# if the `q` key is pressed, break from the lop
|
||||
if key == ord("q"):
|
||||
break
|
||||
if key == ord("d"):
|
||||
firstFrame = None
|
||||
lastframe = frame
|
||||
|
||||
# finally, stop the camera/stream and close any open windows
|
||||
vs.stop() if args.get("video", None) is None else vs.release()
|
||||
cv2.destroyAllWindows()
|
Loading…
x
Reference in New Issue
Block a user