|
|
@@ -1,155 +1,120 @@ |
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
import argparse |
|
|
|
#from datetime import datetime, time |
|
|
|
import time |
|
|
|
from statistics import median |
|
|
|
|
|
|
|
import imutils |
|
|
|
from imutils.video import VideoStream |
|
|
|
#from imutils.video import FPS |
|
|
|
|
|
|
|
import cv2 |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
frame_timer = None |
|
|
|
contour_timer = None |
|
|
|
detection_timer = None |
|
|
|
|
|
|
|
frame_time = [] |
|
|
|
contour_time = [] |
|
|
|
detection_time = [] |
|
|
|
import paho.mqtt.client as mqtt |
|
|
|
from video_stream import imagezmq |
|
|
|
|
|
|
|
VISUAL_DEBUG = True |
|
|
|
BROKER = "141.75.33.126" |
|
|
|
PORT = 1883 |
|
|
|
|
|
|
|
def getArgs(): |
|
|
|
""" Arguments """ |
|
|
|
ap = argparse.ArgumentParser() |
|
|
|
ap.add_argument("-v", "--video", help="path to the video file") |
|
|
|
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") |
|
|
|
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type") |
|
|
|
return vars(ap.parse_args()) |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
args = getArgs() |
|
|
|
timer = Timer() |
|
|
|
|
|
|
|
# if the video argument is None, then the code will read from webcam (work in progress) |
|
|
|
if args.get("video", None) is None: |
|
|
|
vs = VideoStream(src=0).start() |
|
|
|
time.sleep(2.0) |
|
|
|
# otherwise, we are reading from a video file |
|
|
|
else: |
|
|
|
vs = cv2.VideoCapture(args["video"]) |
|
|
|
|
|
|
|
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL) |
|
|
|
detector = DetectionFromFrame(args["min_area"], 0.5) |
|
|
|
while True: |
|
|
|
timer.start_frame_timer() |
|
|
|
detector.currentFrame = vs.read() |
|
|
|
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1] |
|
|
|
# if the frame can not be grabbed, then we have reached the end of the video |
|
|
|
if detector.currentFrame is None: |
|
|
|
break |
|
|
|
|
|
|
|
# resize the frame to 500 |
|
|
|
detector.currentFrame = imutils.resize(detector.currentFrame, width=500) |
|
|
|
detector.framecounter += 1 |
|
|
|
if detector.framecounter > 1: |
|
|
|
cnts = detector.prepareFrame() |
|
|
|
|
|
|
|
for c in cnts: |
|
|
|
timer.start_contour_timer() |
|
|
|
bound_rect = cv2.boundingRect(c) |
|
|
|
#(x, y, w, h) = cv2.boundingRect(c) |
|
|
|
#initBB2 =(x,y,w,h) |
|
|
|
|
|
|
|
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt' |
|
|
|
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel' |
|
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2) |
|
|
|
|
|
|
|
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1] |
|
|
|
trackbox = detector.currentFrame[bound_rect[1]:bound_rect[1]+bound_rect[3], |
|
|
|
bound_rect[0]:bound_rect[0]+bound_rect[2]] |
|
|
|
trackbox = cv2.resize(trackbox, (224, 224)) |
|
|
|
#cv2.imshow('image',trackbox) |
|
|
|
timer.start_detection_timer() |
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) |
|
|
|
net.setInput(blob) |
|
|
|
detections = net.forward() |
|
|
|
try: |
|
|
|
mqtt_client = mqtt.Client("pi-camera") |
|
|
|
mqtt_client.connect(BROKER, PORT) |
|
|
|
except: |
|
|
|
print("Connection to MQTT-Broker failed.") |
|
|
|
return 1 |
|
|
|
|
|
|
|
try: |
|
|
|
args = getArgs() |
|
|
|
timer = Timer() |
|
|
|
|
|
|
|
# if the video argument is None, then the code will read from webcam (work in progress) |
|
|
|
if args.get("video", None) is None: |
|
|
|
#vs = VideoStream(src=0).start() |
|
|
|
image_hub = imagezmq.ImageHub() |
|
|
|
|
|
|
|
time.sleep(2.0) |
|
|
|
# otherwise, we are reading from a video file |
|
|
|
else: |
|
|
|
vs = cv2.VideoCapture(args["video"]) |
|
|
|
|
|
|
|
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL) |
|
|
|
detector = DetectionFromFrame(args["min_area"], 0.8) |
|
|
|
while True: |
|
|
|
people_count = 0 |
|
|
|
timer.start_frame_timer() |
|
|
|
if args.get("video", None) is None: |
|
|
|
rpi_name, detector.currentFrame = image_hub.recv_image() |
|
|
|
image_hub.send_reply(b'OK') |
|
|
|
else: |
|
|
|
detector.currentFrame = vs.read() |
|
|
|
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1] |
|
|
|
# if the frame can not be grabbed, then we have reached the end of the video |
|
|
|
if detector.currentFrame is None: |
|
|
|
break |
|
|
|
|
|
|
|
# resize the frame to 500 |
|
|
|
detector.currentFrame = imutils.resize(detector.currentFrame, width=500) |
|
|
|
detector.framecounter += 1 |
|
|
|
if detector.framecounter > 1: |
|
|
|
|
|
|
|
for i in np.arange(0, detections.shape[2]): |
|
|
|
cnts = detector.prepareFrame() |
|
|
|
|
|
|
|
for c in cnts: |
|
|
|
bound_rect = cv2.boundingRect(c) |
|
|
|
#(x, y, w, h) = cv2.boundingRect(c) |
|
|
|
#initBB2 =(x,y,w,h) |
|
|
|
|
|
|
|
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt' |
|
|
|
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel' |
|
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2) |
|
|
|
|
|
|
|
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1] |
|
|
|
trackbox = detector.currentFrame[bound_rect[1]:bound_rect[1]+bound_rect[3], |
|
|
|
bound_rect[0]:bound_rect[0]+bound_rect[2]] |
|
|
|
trackbox = cv2.resize(trackbox, (224, 224)) |
|
|
|
#cv2.imshow('image',trackbox) |
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) |
|
|
|
net.setInput(blob) |
|
|
|
detections = net.forward() |
|
|
|
|
|
|
|
detector.detectConfidentiallyPeople(i, detections, bound_rect) |
|
|
|
timer.stop_detection_timer() |
|
|
|
|
|
|
|
cv2.rectangle(detector.currentFrame, (bound_rect[0], bound_rect[1]), |
|
|
|
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), (255, 255, 0), 1) |
|
|
|
|
|
|
|
timer.stop_contour_timer() |
|
|
|
|
|
|
|
|
|
|
|
# show the frame and record if the user presses a key |
|
|
|
cv2.imshow("Video stream", detector.currentFrame) |
|
|
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
|
|
|
|
# if the `q` key is pressed, break from the lop |
|
|
|
if key == ord("q"): |
|
|
|
break |
|
|
|
if key == ord("d"): |
|
|
|
detector.firstFrame = None |
|
|
|
#detector.lastFrame = detector.currentFrame |
|
|
|
|
|
|
|
timer.print_time() |
|
|
|
|
|
|
|
# finally, stop the camera/stream and close any open windows |
|
|
|
vs.stop() if args.get("video", None) is None else vs.release() |
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
|
|
|
class Timer: |
|
|
|
def __init__(self): |
|
|
|
self.frame_timer = None |
|
|
|
self.contour_timer = None |
|
|
|
self.detection_timer = None |
|
|
|
|
|
|
|
self.contour_time = [] |
|
|
|
self.detection_time = [] |
|
|
|
|
|
|
|
def start_frame_timer(self): |
|
|
|
self.frame_timer = time.time() |
|
|
|
for i in np.arange(0, detections.shape[2]): |
|
|
|
people_count += detector.detectConfidentiallyPeople(i, detections, bound_rect) |
|
|
|
|
|
|
|
def get_frame_time(self): |
|
|
|
return time.time() - self.frame_timer |
|
|
|
cv2.rectangle(detector.currentFrame, (bound_rect[0], bound_rect[1]), |
|
|
|
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), (255, 255, 0), 1) |
|
|
|
|
|
|
|
# show the frame and record if the user presses a key |
|
|
|
cv2.imshow("Video stream", detector.currentFrame) |
|
|
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
|
|
|
|
def start_contour_timer(self): |
|
|
|
self.contour_timer = time.time() |
|
|
|
# send number of people detected via mqtt |
|
|
|
mqtt_client.publish("/gso/bb/104/Camera", str(people_count)) |
|
|
|
|
|
|
|
def stop_contour_timer(self): |
|
|
|
self.contour_time.append(time.time() - self.contour_timer) |
|
|
|
# if the `q` key is pressed, break from the lop |
|
|
|
if key == ord("q"): |
|
|
|
break |
|
|
|
if key == ord("d"): |
|
|
|
detector.firstFrame = None |
|
|
|
#detector.lastFrame = detector.currentFrame |
|
|
|
|
|
|
|
def start_detection_timer(self): |
|
|
|
self.detection_timer = time.time() |
|
|
|
timer.print_frame_time() |
|
|
|
|
|
|
|
def stop_detection_timer(self): |
|
|
|
self.detection_time.append(time.time() - self.detection_timer) |
|
|
|
|
|
|
|
def print_time(self): |
|
|
|
average_contour = 0 if not self.contour_time else sum(self.contour_time)/float(len(self.contour_time)) |
|
|
|
average_detection = 0 if not self.detection_time else sum(self.detection_time)/float(len(self.detection_time)) |
|
|
|
# finally, stop the camera/stream and close any open windows |
|
|
|
if args.get("video", None) is not None: |
|
|
|
vs.stop() if args.get("video", None) is None else vs.release() |
|
|
|
|
|
|
|
median_contour = 0 if not self.contour_time else median(self.contour_time) |
|
|
|
median_detection = 0 if not self.detection_time else median(self.detection_time) |
|
|
|
|
|
|
|
total_contour = sum(self.contour_time) |
|
|
|
total_detection = sum(self.detection_time) |
|
|
|
|
|
|
|
print("Time for Frame: {:.2f}. Contour Total: {:.2f}. Contour Median: {:.2f}. Contour Average: {:.2f}. Detection Total: {:.2f}. Detection Median: {:.2f}. Detection Average: {:.2f}. ".format( |
|
|
|
self.get_frame_time(), total_contour, median_contour, average_contour, total_detection, median_detection, average_detection)) |
|
|
|
#print("Contour Times:" + str(timer.contour_time)) |
|
|
|
#print("Detection Times:" + str(timer.detection_time)) |
|
|
|
self.contour_time = [] |
|
|
|
self.detection_time = [] |
|
|
|
cv2.destroyAllWindows() |
|
|
|
finally: |
|
|
|
if args.get("video", None) is None: |
|
|
|
image_hub.send_reply(b'OK') |
|
|
|
|
|
|
|
class DetectionFromFrame: |
|
|
|
def __init__(self, min_size, confidence): |
|
|
@@ -205,27 +170,65 @@ class DetectionFromFrame: |
|
|
|
confidence = detections[0, 0, i, 2] |
|
|
|
|
|
|
|
if confidence > self.confidence_level: |
|
|
|
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of |
|
|
|
# the bounding box for the object |
|
|
|
#idx = int(detections[0, 0, i, 1]) |
|
|
|
#box = detections[0, 0, i, 3:7] * np.array([bound_rect[2], bound_rect[3], bound_rect[2], bound_rect[3]]) |
|
|
|
#(startX, startY, endX, endY) = box.astype("int") |
|
|
|
# draw the prediction on the frame |
|
|
|
|
|
|
|
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) |
|
|
|
label = "{:.2f}%".format(confidence * 100) |
|
|
|
|
|
|
|
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) |
|
|
|
# draw a rectangle in green over the detected area |
|
|
|
cv2.rectangle(self.currentFrame, (bound_rect[0], bound_rect[1]), |
|
|
|
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), detected_color, 3) |
|
|
|
|
|
|
|
y = bound_rect[1] - 15 if bound_rect[1] - 15 > 15 else bound_rect[1] + 15 |
|
|
|
|
|
|
|
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) |
|
|
|
label = "{:.2f}%".format(confidence * 100) |
|
|
|
cv2.putText(self.currentFrame, label, (bound_rect[0], bound_rect[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, detected_color, 1) |
|
|
|
#cv2.imshow("Video stream", self.currentFrame) |
|
|
|
#print("Person found") |
|
|
|
|
|
|
|
return 1 |
|
|
|
else: |
|
|
|
return 0 |
|
|
|
|
|
|
|
class Timer: |
|
|
|
def __init__(self): |
|
|
|
self.frame_timer = None |
|
|
|
self.contour_timer = None |
|
|
|
self.detection_timer = None |
|
|
|
|
|
|
|
self.contour_time = [] |
|
|
|
self.detection_time = [] |
|
|
|
|
|
|
|
def start_frame_timer(self): |
|
|
|
self.frame_timer = time.time() |
|
|
|
|
|
|
|
def get_frame_time(self): |
|
|
|
return time.time() - self.frame_timer |
|
|
|
|
|
|
|
def start_contour_timer(self): |
|
|
|
self.contour_timer = time.time() |
|
|
|
|
|
|
|
def stop_contour_timer(self): |
|
|
|
self.contour_time.append(time.time() - self.contour_timer) |
|
|
|
|
|
|
|
def start_detection_timer(self): |
|
|
|
self.detection_timer = time.time() |
|
|
|
|
|
|
|
def stop_detection_timer(self): |
|
|
|
self.detection_time.append(time.time() - self.detection_timer) |
|
|
|
|
|
|
|
def print_frame_time(self): |
|
|
|
print("Time for Frame: {:.2f}.".format(self.get_frame_time())) |
|
|
|
|
|
|
|
|
|
|
|
def print_other_times(self): |
|
|
|
average_contour = 0 if not self.contour_time else sum(self.contour_time)/float(len(self.contour_time)) |
|
|
|
average_detection = 0 if not self.detection_time else sum(self.detection_time)/float(len(self.detection_time)) |
|
|
|
|
|
|
|
median_contour = 0 if not self.contour_time else median(self.contour_time) |
|
|
|
median_detection = 0 if not self.detection_time else median(self.detection_time) |
|
|
|
|
|
|
|
total_contour = sum(self.contour_time) |
|
|
|
total_detection = sum(self.detection_time) |
|
|
|
|
|
|
|
print("Contour Total: {:.2f}. Contour Median: {:.2f}. Contour Average: {:.2f}.".format( |
|
|
|
total_contour, median_contour, average_contour)) |
|
|
|
print("Detection Total: {:.2f}. Detection Median: {:.2f}. Detection Average: {:.2f}. ".format( |
|
|
|
total_detection, median_detection, average_detection)) |
|
|
|
|
|
|
|
self.contour_time = [] |
|
|
|
self.detection_time = [] |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |