|
|
@@ -50,6 +50,7 @@ if args.get("video", None) is None: |
|
|
|
# otherwise, we are reading from a video file |
|
|
|
else: |
|
|
|
vs = cv2.VideoCapture(args["video"]) |
|
|
|
#vs.set(cv2.CAP_PROP_FPS, 2) |
|
|
|
|
|
|
|
"""" Analyzing video frames """ |
|
|
|
# loop over the frames of the video, and store corresponding information from each frame |
|
|
@@ -92,7 +93,7 @@ while True: |
|
|
|
# dilate the thresholded image to fill in holes, then find contours on thresholded image |
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2) |
|
|
|
thresh = np.uint8(thresh) |
|
|
|
cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
_, cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
#cnts = cnts if imutils.is_cv2() else im2 |
|
|
|
#print(len(cnts)) |
|
|
|
#if len(cnts) > 1: |
|
|
@@ -120,7 +121,7 @@ while True: |
|
|
|
|
|
|
|
trackbox = frame[y:y+h, x:x+w] |
|
|
|
trackbox = cv2.resize(trackbox, (224, 224)) |
|
|
|
cv2.imshow('image',trackbox) |
|
|
|
#cv2.imshow('image',trackbox) |
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) |
|
|
|
net.setInput(blob) |
|
|
|
detections = net.forward() |