|
|
|
|
|
|
|
|
|
|
|
# import the necessary packages |
|
|
|
|
|
from __future__ import print_function |
|
|
|
|
|
from imutils.object_detection import non_max_suppression |
|
|
|
|
|
from imutils import paths |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import argparse |
|
|
|
|
|
import imutils |
|
|
|
|
|
import cv2 |
|
|
|
|
|
|
|
|
|
|
|
# construct the argument parse and parse the arguments |
|
|
|
|
|
ap = argparse.ArgumentParser() |
|
|
|
|
|
ap.add_argument("-i", "--images", required=True, help="path to images directory") |
|
|
|
|
|
args = vars(ap.parse_args()) |
|
|
|
|
|
|
|
|
|
|
|
# initialize the HOG descriptor/person detector |
|
|
|
|
|
hog = cv2.HOGDescriptor() |
|
|
|
|
|
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector()) |
|
|
|
|
|
|
|
|
|
|
|
# loop over the image paths |
|
|
|
|
|
for imagePath in paths.list_images(args["images"]): |
|
|
|
|
|
# load the image and resize it to (1) reduce detection time |
|
|
|
|
|
# and (2) improve detection accuracy |
|
|
|
|
|
image = cv2.imread(imagePath) |
|
|
|
|
|
image = imutils.resize(image, width=min(400, image.shape[1])) |
|
|
|
|
|
orig = image.copy() |
|
|
|
|
|
|
|
|
|
|
|
# detect people in the image |
|
|
|
|
|
(rects, weights) = hog.detectMultiScale(image, winStride=(4, 4), |
|
|
|
|
|
padding=(8, 8), scale=1.05) |
|
|
|
|
|
|
|
|
|
|
|
# draw the original bounding boxes |
|
|
|
|
|
for (x, y, w, h) in rects: |
|
|
|
|
|
cv2.rectangle(orig, (x, y), (x + w, y + h), (0, 0, 255), 2) |
|
|
|
|
|
|
|
|
|
|
|
# apply non-maxima suppression to the bounding boxes using a |
|
|
|
|
|
# fairly large overlap threshold to try to maintain overlapping |
|
|
|
|
|
# boxes that are still people |
|
|
|
|
|
rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects]) |
|
|
|
|
|
pick = non_max_suppression(rects, probs=None, overlapThresh=0.65) |
|
|
|
|
|
|
|
|
|
|
|
# draw the final bounding boxes |
|
|
|
|
|
for (xA, yA, xB, yB) in pick: |
|
|
|
|
|
cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2) |
|
|
|
|
|
|
|
|
|
|
|
# show some information on the number of bounding boxes |
|
|
|
|
|
filename = imagePath[imagePath.rfind("/") + 1:] |
|
|
|
|
|
print("[INFO] {}: {} original boxes, {} after suppression".format(filename, len(rects), len(pick))) |
|
|
|
|
|
|
|
|
|
|
|
# show the output images |
|
|
|
|
|
#cv2.imshow("Before NMS", orig) |
|
|
|
|
|
#cv2.imshow("After NMS", image) |
|
|
|
|
|
#cv2.waitKey(0) |