Compare commits

..

2 Commits

3 changed files with 177 additions and 2 deletions

1
.gitignore vendored
View File

@ -7,3 +7,4 @@ camera/videos
*.jpg
*.h264
*.mp4
*.png

160
camera/counter_people.py Normal file
View File

@ -0,0 +1,160 @@
from imutils.object_detection import non_max_suppression
import numpy as np
import imutils
import cv2
import requests
import time
import argparse
import time
import base64
'''
Usage:
python peopleCounter.py -i PATH_TO_IMAGE # Reads and detect people in a single local stored image
python peopleCounter.py -c # Attempts to detect people using webcam
'''
HOGCV = cv2.HOGDescriptor()
HOGCV.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
def detector(image):
'''
@image is a numpy array
'''
clone = image.copy()
(rects, weights) = HOGCV.detectMultiScale(image, winStride=(4, 4),
padding=(8, 8), scale=1.05)
# draw the original bounding boxes
for (x, y, w, h) in rects:
cv2.rectangle(clone, (x, y), (x + w, y + h), (0, 0, 255), 2)
# Applies non-max supression from imutils package to kick-off overlapped
# boxes
rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])
result = non_max_suppression(rects, probs=None, overlapThresh=0.65)
return result
def buildPayload(variable, value, context):
return {variable: {"value": value, "context": context}}
def argsParser():
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default=None,
help="path to image test file directory")
ap.add_argument("-c", "--camera", default=False,
help="Set as true if you wish to use the camera")
args = vars(ap.parse_args())
return args
def localDetect(image_path):
result = []
image = cv2.imread(image_path)
image = imutils.resize(image, width=min(400, image.shape[1]))
clone = image.copy()
if len(image) <= 0:
print("[ERROR] could not read local image")
return result
print("[INFO] Detecting people")
result = detector(image)
"""# shows the result
for (xA, yA, xB, yB) in result:
cv2.rectangle(image, (xA, yA), (xB, yB), (0, 255, 0), 2)
cv2.imshow("result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("result.png", np.hstack((clone, image)))"""
return result#(result, image)
def cameraDetect(token, device, variable, sample_time=5):
cap = cv2.VideoCapture(0)
init = time.time()
# Allowed sample time for Ubidots is 1 dot/second
if sample_time < 1:
sample_time = 1
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
frame = imutils.resize(frame, width=min(400, frame.shape[1]))
result = detector(frame.copy())
# shows the result
#for (xA, yA, xB, yB) in result:
# cv2.rectangle(frame, (xA, yA), (xB, yB), (0, 255, 0), 2)
#cv2.imshow('frame', frame)
# Sends results
if time.time() - init >= sample_time:
#print("[INFO] Sending actual frame results")
# Converts the image to base 64 and adds it to the context
#b64 = convert_to_base64(frame)
#context = {"image": b64}
if len(result):
print("{} people detected.".format(len(result)))
init = time.time()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
def convert_to_base64(image):
image = imutils.resize(image, width=400)
img_str = cv2.imencode('.png', image)[1].tostring()
b64 = base64.b64encode(img_str)
return b64.decode('utf-8')
def detectPeople(args):
image_path = args["image"]
camera = True if str(args["camera"]) == 'true' else False
# Routine to read local image
if image_path != None and not camera:
print("[INFO] Image path provided, attempting to read image")
(result, image) = localDetect(image_path)
print("[INFO] sending results")
# Converts the image to base 64 and adds it to the context
b64 = convert_to_base64(image)
context = {"image": b64}
print(len(result))
# Sends the result
"""req = sendToUbidots(TOKEN, DEVICE, VARIABLE,
len(result), context=context)
if req.status_code >= 400:
print("[ERROR] Could not send data to Ubidots")
return req"""
# Routine to read images from webcam
if camera:
print("[INFO] reading camera images")
cameraDetect(TOKEN, DEVICE, VARIABLE)
def main():
args = argsParser()
detectPeople(args)
if __name__ == '__main__':
main()

View File

@ -20,6 +20,12 @@ args = vars(ap.parse_args())
""" Determine opencv version and select tracker """
# extract the OpenCV version info
(major, minor) = cv2.__version__.split(".")[:2]
# different methods of opencv require differing ways to unpack find countours
if int(major) > 3:
OPENCV4=True
else:
OPENCV4=False
# if we are using OpenCV 3.2 or an earlier version, we can use a special factory
# function to create the entity that tracks objects
if int(major) == 3 and int(minor) < 3:
@ -62,8 +68,13 @@ now = ''
framecounter = 0
trackeron = 0
people_count_total = 0
frame_counter= 0
while True:
"""frame_counter+=1
if framecounter%5 != 0:
continue"""
people_count_per_frame = 0
frame = vs.read()
frame = frame if args.get("video", None) is None else frame[1]
@ -93,6 +104,9 @@ while True:
# dilate the thresholded image to fill in holes, then find contours on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
thresh = np.uint8(thresh)
if OPENCV4:
cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
else:
_, cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#cnts = cnts if imutils.is_cv2() else im2
#print(len(cnts))