233 lines
8.5 KiB
Python
Executable File
233 lines
8.5 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import argparse
|
|
#from datetime import datetime, time
|
|
import time
|
|
from statistics import median
|
|
|
|
import imutils
|
|
from imutils.video import VideoStream
|
|
#from imutils.video import FPS
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
frame_timer = None
|
|
contour_timer = None
|
|
detection_timer = None
|
|
|
|
frame_time = []
|
|
contour_time = []
|
|
detection_time = []
|
|
|
|
VISUAL_DEBUG = True
|
|
|
|
def getArgs():
|
|
""" Arguments """
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-v", "--video", help="path to the video file")
|
|
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
|
|
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type")
|
|
return vars(ap.parse_args())
|
|
|
|
|
|
def main():
|
|
args = getArgs()
|
|
timer = Timer()
|
|
|
|
# if the video argument is None, then the code will read from webcam (work in progress)
|
|
if args.get("video", None) is None:
|
|
vs = VideoStream(src=0).start()
|
|
time.sleep(2.0)
|
|
# otherwise, we are reading from a video file
|
|
else:
|
|
vs = cv2.VideoCapture(args["video"])
|
|
|
|
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL)
|
|
detector = DetectionFromFrame(args["min_area"], 0.5)
|
|
while True:
|
|
timer.start_frame_timer()
|
|
detector.currentFrame = vs.read()
|
|
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1]
|
|
# if the frame can not be grabbed, then we have reached the end of the video
|
|
if detector.currentFrame is None:
|
|
break
|
|
|
|
# resize the frame to 500
|
|
detector.currentFrame = imutils.resize(detector.currentFrame, width=500)
|
|
detector.framecounter += 1
|
|
if detector.framecounter > 1:
|
|
cnts = detector.prepareFrame()
|
|
|
|
for c in cnts:
|
|
timer.start_contour_timer()
|
|
bound_rect = cv2.boundingRect(c)
|
|
#(x, y, w, h) = cv2.boundingRect(c)
|
|
#initBB2 =(x,y,w,h)
|
|
|
|
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt'
|
|
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel'
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2)
|
|
|
|
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1]
|
|
trackbox = detector.currentFrame[bound_rect[1]:bound_rect[1]+bound_rect[3],
|
|
bound_rect[0]:bound_rect[0]+bound_rect[2]]
|
|
trackbox = cv2.resize(trackbox, (224, 224))
|
|
#cv2.imshow('image',trackbox)
|
|
timer.start_detection_timer()
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
|
|
net.setInput(blob)
|
|
detections = net.forward()
|
|
|
|
for i in np.arange(0, detections.shape[2]):
|
|
|
|
detector.detectConfidentiallyPeople(i, detections, bound_rect)
|
|
timer.stop_detection_timer()
|
|
|
|
cv2.rectangle(detector.currentFrame, (bound_rect[0], bound_rect[1]),
|
|
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), (255, 255, 0), 1)
|
|
|
|
timer.stop_contour_timer()
|
|
|
|
|
|
# show the frame and record if the user presses a key
|
|
cv2.imshow("Video stream", detector.currentFrame)
|
|
key = cv2.waitKey(1) & 0xFF
|
|
|
|
# if the `q` key is pressed, break from the lop
|
|
if key == ord("q"):
|
|
break
|
|
if key == ord("d"):
|
|
detector.firstFrame = None
|
|
#detector.lastFrame = detector.currentFrame
|
|
|
|
timer.print_time()
|
|
|
|
# finally, stop the camera/stream and close any open windows
|
|
vs.stop() if args.get("video", None) is None else vs.release()
|
|
cv2.destroyAllWindows()
|
|
|
|
class Timer:
|
|
def __init__(self):
|
|
self.frame_timer = None
|
|
self.contour_timer = None
|
|
self.detection_timer = None
|
|
|
|
self.contour_time = []
|
|
self.detection_time = []
|
|
|
|
def start_frame_timer(self):
|
|
self.frame_timer = time.time()
|
|
|
|
def get_frame_time(self):
|
|
return time.time() - self.frame_timer
|
|
|
|
def start_contour_timer(self):
|
|
self.contour_timer = time.time()
|
|
|
|
def stop_contour_timer(self):
|
|
self.contour_time.append(time.time() - self.contour_timer)
|
|
|
|
def start_detection_timer(self):
|
|
self.detection_timer = time.time()
|
|
|
|
def stop_detection_timer(self):
|
|
self.detection_time.append(time.time() - self.detection_timer)
|
|
|
|
def print_time(self):
|
|
average_contour = 0 if not self.contour_time else sum(self.contour_time)/float(len(self.contour_time))
|
|
average_detection = 0 if not self.detection_time else sum(self.detection_time)/float(len(self.detection_time))
|
|
|
|
median_contour = 0 if not self.contour_time else median(self.contour_time)
|
|
median_detection = 0 if not self.detection_time else median(self.detection_time)
|
|
|
|
total_contour = sum(self.contour_time)
|
|
total_detection = sum(self.detection_time)
|
|
|
|
print("Time for Frame: {:.2f}. Contour Total: {:.2f}. Contour Median: {:.2f}. Contour Average: {:.2f}. Detection Total: {:.2f}. Detection Median: {:.2f}. Detection Average: {:.2f}. ".format(
|
|
self.get_frame_time(), total_contour, median_contour, average_contour, total_detection, median_detection, average_detection))
|
|
#print("Contour Times:" + str(timer.contour_time))
|
|
#print("Detection Times:" + str(timer.detection_time))
|
|
self.contour_time = []
|
|
self.detection_time = []
|
|
|
|
class DetectionFromFrame:
|
|
def __init__(self, min_size, confidence):
|
|
self.min_size = min_size
|
|
self.confidence_level = confidence
|
|
|
|
self.firstFrame = None
|
|
self.currentFrame = None
|
|
|
|
self.initBB2 = None
|
|
self.fps = None
|
|
self.differ = None
|
|
self.now = ''
|
|
self.framecounter = 0
|
|
self.people_count_total = 0
|
|
|
|
|
|
def prepareFrame(self):
|
|
gray = cv2.cvtColor(self.currentFrame, cv2.COLOR_BGR2GRAY)
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
|
# if the first frame is None, initialize it
|
|
if self.firstFrame is None:
|
|
self.firstFrame = gray
|
|
return []
|
|
|
|
# compute the absolute difference between the current frame and first frame
|
|
frameDelta = cv2.absdiff(self.firstFrame, gray)
|
|
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
#debug
|
|
"""if VISUAL_DEBUG:
|
|
cv2.imshow("debug image", thresh)
|
|
cv2.waitKey(0)
|
|
cv2.destroyWindow("debug image")
|
|
#cv2.destroyWindow("threshhold image")"""
|
|
|
|
# dilate the thresholded image to fill in holes
|
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
|
|
|
# find contours on thresholded image
|
|
thresh = np.uint8(thresh)
|
|
cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
return cnts
|
|
|
|
def detectConfidentiallyPeople(self, i, detections, bound_rect):
|
|
#CLASSES = ["person"]
|
|
|
|
detected_color = (0, 255, 0)
|
|
#COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
|
|
|
confidence = detections[0, 0, i, 2]
|
|
|
|
if confidence > self.confidence_level:
|
|
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
|
|
# the bounding box for the object
|
|
#idx = int(detections[0, 0, i, 1])
|
|
#box = detections[0, 0, i, 3:7] * np.array([bound_rect[2], bound_rect[3], bound_rect[2], bound_rect[3]])
|
|
#(startX, startY, endX, endY) = box.astype("int")
|
|
# draw the prediction on the frame
|
|
|
|
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
|
|
label = "{:.2f}%".format(confidence * 100)
|
|
|
|
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
|
|
cv2.rectangle(self.currentFrame, (bound_rect[0], bound_rect[1]),
|
|
(bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3]), detected_color, 3)
|
|
|
|
y = bound_rect[1] - 15 if bound_rect[1] - 15 > 15 else bound_rect[1] + 15
|
|
|
|
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
|
cv2.putText(self.currentFrame, label, (bound_rect[0], bound_rect[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, detected_color, 1)
|
|
#cv2.imshow("Video stream", self.currentFrame)
|
|
#print("Person found")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|