forked from freudenreichan/info2Praktikum-NeuronalesNetz
matrix.c aenderungen
This commit is contained in:
parent
3c4e4df496
commit
2a1ff310db
5
.gitignore
vendored
5
.gitignore
vendored
@ -2,6 +2,9 @@ mnist
|
||||
runTests
|
||||
*.o
|
||||
*.exe
|
||||
.vscode/c_cpp_properties.json
|
||||
.vscode/settings.json
|
||||
.vscode/launch.json
|
||||
.vscode/settings.json
|
||||
.vscode/settings.json
|
||||
runImageInputTests
|
||||
testFile.info2
|
||||
18
.vscode/c_cpp_properties.json
vendored
18
.vscode/c_cpp_properties.json
vendored
@ -1,18 +0,0 @@
|
||||
{
|
||||
"configurations": [
|
||||
{
|
||||
"name": "windows-gcc-x64",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/**"
|
||||
],
|
||||
"compilerPath": "C:/ProgramData/mingw64/mingw64/bin/gcc.exe",
|
||||
"cStandard": "${default}",
|
||||
"cppStandard": "${default}",
|
||||
"intelliSenseMode": "windows-gcc-x64",
|
||||
"compilerArgs": [
|
||||
""
|
||||
]
|
||||
}
|
||||
],
|
||||
"version": 4
|
||||
}
|
||||
24
.vscode/launch.json
vendored
24
.vscode/launch.json
vendored
@ -1,24 +0,0 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "C/C++ Runner: Debug Session",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"args": [],
|
||||
"stopAtEntry": false,
|
||||
"externalConsole": true,
|
||||
"cwd": "c:/Users/Max-R/I2Pr/repoKachelto/I2-Pr_neuronalesNetz/info2Praktikum-NeuronalesNetz",
|
||||
"program": "c:/Users/Max-R/I2Pr/repoKachelto/I2-Pr_neuronalesNetz/info2Praktikum-NeuronalesNetz/build/Debug/outDebug",
|
||||
"MIMode": "gdb",
|
||||
"miDebuggerPath": "gdb",
|
||||
"setupCommands": [
|
||||
{
|
||||
"description": "Enable pretty-printing for gdb",
|
||||
"text": "-enable-pretty-printing",
|
||||
"ignoreFailures": true
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
58
.vscode/settings.json
vendored
58
.vscode/settings.json
vendored
@ -1,59 +1,3 @@
|
||||
{
|
||||
"C_Cpp_Runner.cCompilerPath": "gcc",
|
||||
"C_Cpp_Runner.cppCompilerPath": "g++",
|
||||
"C_Cpp_Runner.debuggerPath": "gdb",
|
||||
"C_Cpp_Runner.cStandard": "",
|
||||
"C_Cpp_Runner.cppStandard": "",
|
||||
"C_Cpp_Runner.msvcBatchPath": "C:/Program Files/Microsoft Visual Studio/VR_NR/Community/VC/Auxiliary/Build/vcvarsall.bat",
|
||||
"C_Cpp_Runner.useMsvc": false,
|
||||
"C_Cpp_Runner.warnings": [
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-Wpedantic",
|
||||
"-Wshadow",
|
||||
"-Wformat=2",
|
||||
"-Wcast-align",
|
||||
"-Wconversion",
|
||||
"-Wsign-conversion",
|
||||
"-Wnull-dereference"
|
||||
],
|
||||
"C_Cpp_Runner.msvcWarnings": [
|
||||
"/W4",
|
||||
"/permissive-",
|
||||
"/w14242",
|
||||
"/w14287",
|
||||
"/w14296",
|
||||
"/w14311",
|
||||
"/w14826",
|
||||
"/w44062",
|
||||
"/w44242",
|
||||
"/w14905",
|
||||
"/w14906",
|
||||
"/w14263",
|
||||
"/w44265",
|
||||
"/w14928"
|
||||
],
|
||||
"C_Cpp_Runner.enableWarnings": true,
|
||||
"C_Cpp_Runner.warningsAsError": false,
|
||||
"C_Cpp_Runner.compilerArgs": [],
|
||||
"C_Cpp_Runner.linkerArgs": [],
|
||||
"C_Cpp_Runner.includePaths": [],
|
||||
"C_Cpp_Runner.includeSearch": [
|
||||
"*",
|
||||
"**/*"
|
||||
],
|
||||
"C_Cpp_Runner.excludeSearch": [
|
||||
"**/build",
|
||||
"**/build/**",
|
||||
"**/.*",
|
||||
"**/.*/**",
|
||||
"**/.vscode",
|
||||
"**/.vscode/**"
|
||||
],
|
||||
"C_Cpp_Runner.useAddressSanitizer": false,
|
||||
"C_Cpp_Runner.useUndefinedSanitizer": false,
|
||||
"C_Cpp_Runner.useLeakSanitizer": false,
|
||||
"C_Cpp_Runner.showCompilationTime": false,
|
||||
"C_Cpp_Runner.useLinkTimeOptimization": false,
|
||||
"C_Cpp_Runner.msvcSecureNoWarnings": false
|
||||
"makefile.configureOnOpen": false
|
||||
}
|
||||
@ -4,6 +4,8 @@
|
||||
#include <string.h>
|
||||
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
// define BUFFER 100
|
||||
// 10x10 pixel
|
||||
|
||||
/* ----------------------------------------------------------
|
||||
1. Header prüfen
|
||||
@ -40,14 +42,14 @@ static int readSingleImage(FILE *file, GrayScaleImage *img,
|
||||
img->width = width;
|
||||
img->height = height;
|
||||
|
||||
size_t numPixels = (size_t)width * (size_t)height;
|
||||
size_t numPixels = (size_t)width * (size_t)height; // anzahl an pixeln
|
||||
img->buffer = malloc(numPixels);
|
||||
if (!img->buffer)
|
||||
return 0;
|
||||
|
||||
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
|
||||
free(img->buffer);
|
||||
img->buffer = NULL;
|
||||
img->buffer = NULL; // fehler bei ungültiger eingabe
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
|
||||
@ -126,19 +126,25 @@ void test_readImagesFailsOnWrongFileTag(void) {
|
||||
remove(path);
|
||||
}
|
||||
|
||||
void test_read_GrayScale_Pixel(void) {
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
// Test
|
||||
|
||||
void test_read_GrayScale_Pixel(
|
||||
void) { // testet das einlesen eines graustufenbildes von readImages()
|
||||
GrayScaleImageSeries *series = NULL; // enthält später das Bild
|
||||
const char *path = "testFile.info2";
|
||||
|
||||
prepareImageFile(path, 8, 8, 1, 1);
|
||||
prepareImageFile(path, 8, 8, 1,
|
||||
1); // Höhe x Breite in Pixel, Anzahl Bilder und Kategorie
|
||||
series = readImages(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(series);
|
||||
TEST_ASSERT_NOT_NULL(series->images);
|
||||
TEST_ASSERT_EQUAL_UINT(1, series->count);
|
||||
TEST_ASSERT_NOT_NULL(series); // Speicher reservieren
|
||||
TEST_ASSERT_NOT_NULL(series->images); // Inhalt ist da
|
||||
TEST_ASSERT_EQUAL_UINT(1, series->count); // Anzahl der Bilder stimmt
|
||||
|
||||
for (int i = 0; i < (8 * 8); i++) {
|
||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images[0].buffer[i]);
|
||||
TEST_ASSERT_EQUAL_UINT8(
|
||||
(GrayScalePixelType)i,
|
||||
series->images[0].buffer[i]); // alle Pixelwerte prüfen
|
||||
}
|
||||
|
||||
clearSeries(series);
|
||||
|
||||
4
makefile
4
makefile
@ -59,8 +59,8 @@ imageInputTests: imageInput.o imageInputTests.c $(unityfolder)/unity.c
|
||||
# --------------------------
|
||||
clean:
|
||||
ifeq ($(OS),Windows_NT)
|
||||
del /f *.o *.exe
|
||||
else
|
||||
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
||||
else
|
||||
del /f *.o *.exe
|
||||
endif
|
||||
|
||||
24
matrix.c
24
matrix.c
@ -9,7 +9,7 @@
|
||||
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
||||
} Matrix;*/
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols) {
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
|
||||
if (cols == 0 || rows == 0) {
|
||||
Matrix errorMatrix = {0, 0, NULL};
|
||||
return errorMatrix;
|
||||
@ -42,9 +42,10 @@ void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
||||
// innerhalb der Zeile
|
||||
}
|
||||
MatrixType getMatrixAt(const Matrix matrix,
|
||||
unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
unsigned int colIdx) {
|
||||
MatrixType
|
||||
getMatrixAt(const Matrix matrix,
|
||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||
const unsigned int colIdx) {
|
||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
||||
return UNDEFINED_MATRIX_VALUE;
|
||||
@ -54,7 +55,7 @@ MatrixType getMatrixAt(const Matrix matrix,
|
||||
|
||||
return value;
|
||||
}
|
||||
Matrix broadcastingCols(const Matrix matrix, const unsigned int cols) {
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
|
||||
Matrix copy1 = createMatrix(matrix.rows, cols);
|
||||
for (int r = 0; r < matrix.rows; r++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
|
||||
@ -64,7 +65,7 @@ Matrix broadcastingCols(const Matrix matrix, const unsigned int cols) {
|
||||
}
|
||||
return copy1;
|
||||
}
|
||||
Matrix broadcastingRows(const Matrix matrix, const unsigned int rows) {
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
|
||||
Matrix copy1 = createMatrix(rows, matrix.cols);
|
||||
for (int c = 0; c < matrix.cols; c++) {
|
||||
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
|
||||
@ -104,7 +105,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
return result;
|
||||
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
|
||||
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
|
||||
Matrix newMatrix = broadcastingCols(matrix1, cols2);
|
||||
Matrix newMatrix = broadCastCols(matrix1, cols2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
if (result.buffer == NULL) {
|
||||
@ -118,9 +119,10 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
clearMatrix(&newMatrix);
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadcastingCols(matrix2, cols1);
|
||||
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
if (result.buffer == NULL) {
|
||||
@ -134,13 +136,14 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
|
||||
if (rows1 == 1) {
|
||||
Matrix newMatrix = broadcastingRows(matrix1, rows2);
|
||||
Matrix newMatrix = broadCastRows(matrix1, rows2);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||
if (result.buffer == NULL) {
|
||||
@ -156,7 +159,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
}
|
||||
return result;
|
||||
} else {
|
||||
Matrix newMatrix2 = broadcastingRows(matrix2, rows1);
|
||||
Matrix newMatrix2 = broadCastRows(matrix2, rows1);
|
||||
// add
|
||||
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||
if (result.buffer == NULL) {
|
||||
@ -170,6 +173,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||
setMatrixAt(sum, result, i, j);
|
||||
}
|
||||
}
|
||||
clearMatrix(&newMatrix2);
|
||||
return result;
|
||||
}
|
||||
} else {
|
||||
|
||||
16
matrix.h
16
matrix.h
@ -13,17 +13,15 @@ typedef struct {
|
||||
|
||||
} Matrix;
|
||||
|
||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
||||
Matrix createMatrix(const unsigned int rows, const unsigned int cols);
|
||||
void clearMatrix(Matrix *matrix);
|
||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx,
|
||||
unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx,
|
||||
unsigned int colIdx);
|
||||
void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||
const unsigned int rowIdx, const unsigned int colIdx);
|
||||
MatrixType getMatrixAt(const Matrix matrix, const unsigned int rowIdx,
|
||||
const unsigned int colIdx);
|
||||
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
|
||||
const unsigned int cols);
|
||||
Matrix broadCastCols(const Matrix matrix, const unsigned int cols);
|
||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows);
|
||||
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
||||
|
||||
|
||||
@ -28,7 +28,11 @@ Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
|
||||
|
||||
Dimension: Form der Matrizen für einen Layer*/
|
||||
|
||||
// speichert NeuralNetwork nn in binäre Datei->erzeugt Dateiformat
|
||||
/* Gewichtsmatrix der Layer:
|
||||
*/
|
||||
|
||||
// speichert NeuralNetwork nn in binäre Datei->später kann es wieder geöffnet
|
||||
// werden
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
||||
if (fptr == NULL)
|
||||
@ -36,11 +40,12 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
|
||||
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
|
||||
// Dateiformat
|
||||
const char header[] =
|
||||
"__info2_neural_network_file_format__"; // header vor jedem Layer
|
||||
fwrite(header, sizeof(char), strlen(header), fptr);
|
||||
const char header[] = "__info2_neural_network_file_format__"; // header string
|
||||
fwrite(header, sizeof(char), strlen(header),
|
||||
fptr); // der header wird am Anfang der Datei platziert
|
||||
|
||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel gibt 0 zurück
|
||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel erkennt, dass Datei leer
|
||||
// ist
|
||||
if (nn.numberOfLayers == 0) {
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
@ -49,7 +54,7 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
}
|
||||
|
||||
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
|
||||
// Output-Neuronen
|
||||
// Output-Neuronen wird in Datei eingefügt
|
||||
int inputDim = (int)nn.layers[0].weights.cols;
|
||||
int outputDim = (int)nn.layers[0].weights.rows;
|
||||
fwrite(&inputDim, sizeof(int), 1, fptr);
|
||||
@ -59,38 +64,36 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
||||
geschrieben. */
|
||||
for (int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
Layer layer = nn.layers[i]; // kürzer, durch alle layer iterieren
|
||||
|
||||
int wrows = (int)layer.weights.rows;
|
||||
int wcols = (int)layer.weights.cols;
|
||||
int wcount = wrows * wcols;
|
||||
int wcount = wrows * wcols; // Anzahl Gewichtseinträge
|
||||
int bcount =
|
||||
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */
|
||||
layer.biases.rows * layer.biases.cols; // Anzahl der Bias-Einträge
|
||||
|
||||
/* Gewichte (MatrixType binär) */
|
||||
/* Gewichte */
|
||||
if (wcount > 0 && layer.weights.buffer != NULL) {
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
|
||||
}
|
||||
} // Gewichte werden als Matrix gespeichert
|
||||
|
||||
/* Biases (MatrixType binär) */
|
||||
/* Biases */
|
||||
if (bcount > 0 && layer.biases.buffer != NULL) {
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
|
||||
}
|
||||
} // Biases werden als Vektor gespeichert
|
||||
|
||||
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */
|
||||
/* outputDimensionen der nächsten Layer */
|
||||
if (i + 1 < nn.numberOfLayers) {
|
||||
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOutput, sizeof(int), 1, fptr);
|
||||
} else {
|
||||
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0
|
||||
schreiben. loadModel liest dann outputDimension = 0 und beendet die
|
||||
Schleife. */
|
||||
// loadModel erkennt 0 als Ende der Datei
|
||||
int zero = 0;
|
||||
fwrite(&zero, sizeof(int), 1, fptr);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fptr);
|
||||
fclose(fptr); // Datei schließen
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user