forked from freudenreichan/info2Praktikum-NeuronalesNetz
neuralNetworkTests
This commit is contained in:
parent
86a9d16c4f
commit
56d59b1b50
29
matrix.c
29
matrix.c
@ -218,4 +218,31 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
|||||||
return error;
|
return error;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2) { return matrix1; }
|
|
||||||
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
||||||
|
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
||||||
|
if (matrix1.cols == matrix2.rows) {
|
||||||
|
Matrix multMatrix = createMatrix(matrix1.rows, matrix2.cols);
|
||||||
|
// durch neue matrix iterieren
|
||||||
|
for (int r = 0; r < matrix1.rows; r++) {
|
||||||
|
for (int c = 0; c < matrix2.cols; c++) {
|
||||||
|
MatrixType sum = 0.0;
|
||||||
|
// skalarprodukte berechnen, k damit die ganze zeile mal die ganze
|
||||||
|
// spalte genommen wird quasi
|
||||||
|
for (int k = 0; k < matrix1.cols; k++) {
|
||||||
|
// sum+=
|
||||||
|
// matrix1.buffer[r*matrix1.cols+k]*matrix2.buffer[k*matrix2.cols+c];
|
||||||
|
sum += getMatrixAt(matrix1, r, k) * getMatrixAt(matrix2, k, c);
|
||||||
|
}
|
||||||
|
// Ergebnisse in neue matrix speichern
|
||||||
|
setMatrixAt(sum, multMatrix, r, c);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return multMatrix;
|
||||||
|
}
|
||||||
|
// sonst fehler, kein multiply möglich
|
||||||
|
else {
|
||||||
|
Matrix errorMatrix = {0, 0, NULL};
|
||||||
|
return errorMatrix;
|
||||||
|
}
|
||||||
|
}
|
||||||
435
neuralNetwork.c
435
neuralNetwork.c
@ -1,268 +1,235 @@
|
|||||||
#include <stdlib.h>
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <math.h>
|
|
||||||
#include <string.h>
|
|
||||||
#include "neuralNetwork.h"
|
#include "neuralNetwork.h"
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
#define BUFFER_SIZE 100
|
#define BUFFER_SIZE 100
|
||||||
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
|
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
|
||||||
|
|
||||||
static void softmax(Matrix *matrix)
|
static void softmax(Matrix *matrix) {
|
||||||
{
|
if (matrix->cols > 0) {
|
||||||
if(matrix->cols > 0)
|
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
|
||||||
{
|
|
||||||
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
|
|
||||||
|
|
||||||
if(colSums != NULL)
|
if (colSums != NULL) {
|
||||||
{
|
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
|
||||||
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
|
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
|
||||||
{
|
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
|
||||||
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
|
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
|
||||||
{
|
colSums[colIdx] += expValue;
|
||||||
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
|
|
||||||
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
|
|
||||||
colSums[colIdx] += expValue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
|
|
||||||
{
|
|
||||||
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
|
|
||||||
{
|
|
||||||
MatrixType normalizedValue = getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
|
|
||||||
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
free(colSums);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
static void relu(Matrix *matrix)
|
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
|
||||||
{
|
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
|
||||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
MatrixType normalizedValue =
|
||||||
{
|
getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
|
||||||
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
|
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static int checkFileHeader(FILE *file)
|
|
||||||
{
|
|
||||||
int isValid = 0;
|
|
||||||
int fileHeaderLen = strlen(FILE_HEADER_STRING);
|
|
||||||
char buffer[BUFFER_SIZE] = {0};
|
|
||||||
|
|
||||||
if(BUFFER_SIZE-1 < fileHeaderLen)
|
|
||||||
fileHeaderLen = BUFFER_SIZE-1;
|
|
||||||
|
|
||||||
if(fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
|
|
||||||
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
|
|
||||||
|
|
||||||
return isValid;
|
|
||||||
}
|
|
||||||
|
|
||||||
static unsigned int readDimension(FILE *file)
|
|
||||||
{
|
|
||||||
int dimension = 0;
|
|
||||||
|
|
||||||
if(fread(&dimension, sizeof(int), 1, file) != 1)
|
|
||||||
dimension = 0;
|
|
||||||
|
|
||||||
return dimension;
|
|
||||||
}
|
|
||||||
|
|
||||||
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
|
|
||||||
{
|
|
||||||
Matrix matrix = createMatrix(rows, cols);
|
|
||||||
|
|
||||||
if(matrix.buffer != NULL)
|
|
||||||
{
|
|
||||||
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
|
|
||||||
clearMatrix(&matrix);
|
|
||||||
}
|
|
||||||
|
|
||||||
return matrix;
|
|
||||||
}
|
|
||||||
|
|
||||||
static Layer readLayer(FILE *file, unsigned int inputDimension, unsigned int outputDimension)
|
|
||||||
{
|
|
||||||
Layer layer;
|
|
||||||
layer.weights = readMatrix(file, outputDimension, inputDimension);
|
|
||||||
layer.biases = readMatrix(file, outputDimension, 1);
|
|
||||||
|
|
||||||
return layer;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int isEmptyLayer(const Layer layer)
|
|
||||||
{
|
|
||||||
return layer.biases.cols == 0 || layer.biases.rows == 0 || layer.biases.buffer == NULL || layer.weights.rows == 0 || layer.weights.cols == 0 || layer.weights.buffer == NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void clearLayer(Layer *layer)
|
|
||||||
{
|
|
||||||
if(layer != NULL)
|
|
||||||
{
|
|
||||||
clearMatrix(&layer->weights);
|
|
||||||
clearMatrix(&layer->biases);
|
|
||||||
layer->activation = NULL;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static void assignActivations(NeuralNetwork model)
|
|
||||||
{
|
|
||||||
for(int i = 0; i < (int)model.numberOfLayers-1; i++)
|
|
||||||
{
|
|
||||||
model.layers[i].activation = relu;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(model.numberOfLayers > 0)
|
|
||||||
model.layers[model.numberOfLayers-1].activation = softmax;
|
|
||||||
}
|
|
||||||
|
|
||||||
NeuralNetwork loadModel(const char *path)
|
|
||||||
{
|
|
||||||
NeuralNetwork model = {NULL, 0};
|
|
||||||
FILE *file = fopen(path, "rb");
|
|
||||||
|
|
||||||
if(file != NULL)
|
|
||||||
{
|
|
||||||
if(checkFileHeader(file))
|
|
||||||
{
|
|
||||||
unsigned int inputDimension = readDimension(file);
|
|
||||||
unsigned int outputDimension = readDimension(file);
|
|
||||||
|
|
||||||
while(inputDimension > 0 && outputDimension > 0)
|
|
||||||
{
|
|
||||||
Layer layer = readLayer(file, inputDimension, outputDimension);
|
|
||||||
Layer *layerBuffer = NULL;
|
|
||||||
|
|
||||||
if(isEmptyLayer(layer))
|
|
||||||
{
|
|
||||||
clearLayer(&layer);
|
|
||||||
clearModel(&model);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
|
||||||
|
|
||||||
if(layerBuffer != NULL)
|
|
||||||
model.layers = layerBuffer;
|
|
||||||
else
|
|
||||||
{
|
|
||||||
clearModel(&model);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
model.layers[model.numberOfLayers] = layer;
|
|
||||||
model.numberOfLayers++;
|
|
||||||
|
|
||||||
inputDimension = outputDimension;
|
|
||||||
outputDimension = readDimension(file);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
fclose(file);
|
}
|
||||||
|
free(colSums);
|
||||||
assignActivations(model);
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
return model;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
|
static void relu(Matrix *matrix) {
|
||||||
{
|
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
|
||||||
Matrix matrix = {NULL, 0, 0};
|
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if(count > 0 && images != NULL)
|
static int checkFileHeader(FILE *file) {
|
||||||
{
|
int isValid = 0;
|
||||||
matrix = createMatrix(images[0].height * images[0].width, count);
|
int fileHeaderLen = strlen(FILE_HEADER_STRING);
|
||||||
|
char buffer[BUFFER_SIZE] = {0};
|
||||||
|
|
||||||
if(matrix.buffer != NULL)
|
if (BUFFER_SIZE - 1 < fileHeaderLen)
|
||||||
{
|
fileHeaderLen = BUFFER_SIZE - 1;
|
||||||
for(int i = 0; i < count; i++)
|
|
||||||
{
|
if (fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
|
||||||
for(int j = 0; j < images[i].width * images[i].height; j++)
|
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
|
||||||
{
|
|
||||||
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
|
return isValid;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
static unsigned int readDimension(FILE *file) {
|
||||||
|
int dimension = 0;
|
||||||
|
|
||||||
|
if (fread(&dimension, sizeof(int), 1, file) != 1)
|
||||||
|
dimension = 0;
|
||||||
|
|
||||||
|
return dimension;
|
||||||
|
}
|
||||||
|
|
||||||
|
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols) {
|
||||||
|
Matrix matrix = createMatrix(rows, cols);
|
||||||
|
|
||||||
|
if (matrix.buffer != NULL) {
|
||||||
|
if (fread(matrix.buffer, sizeof(MatrixType), rows * cols, file) !=
|
||||||
|
rows * cols)
|
||||||
|
clearMatrix(&matrix);
|
||||||
|
}
|
||||||
|
|
||||||
|
return matrix;
|
||||||
|
}
|
||||||
|
|
||||||
|
static Layer readLayer(FILE *file, unsigned int inputDimension,
|
||||||
|
unsigned int outputDimension) {
|
||||||
|
Layer layer;
|
||||||
|
layer.weights = readMatrix(file, outputDimension, inputDimension);
|
||||||
|
layer.biases = readMatrix(file, outputDimension, 1);
|
||||||
|
|
||||||
|
return layer;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int isEmptyLayer(const Layer layer) {
|
||||||
|
return layer.biases.cols == 0 || layer.biases.rows == 0 ||
|
||||||
|
layer.biases.buffer == NULL || layer.weights.rows == 0 ||
|
||||||
|
layer.weights.cols == 0 || layer.weights.buffer == NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void clearLayer(Layer *layer) {
|
||||||
|
if (layer != NULL) {
|
||||||
|
clearMatrix(&layer->weights);
|
||||||
|
clearMatrix(&layer->biases);
|
||||||
|
layer->activation = NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void assignActivations(NeuralNetwork model) {
|
||||||
|
for (int i = 0; i < (int)model.numberOfLayers - 1; i++) {
|
||||||
|
model.layers[i].activation = relu;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (model.numberOfLayers > 0)
|
||||||
|
model.layers[model.numberOfLayers - 1].activation = softmax;
|
||||||
|
}
|
||||||
|
|
||||||
|
NeuralNetwork loadModel(const char *path) {
|
||||||
|
NeuralNetwork model = {NULL, 0};
|
||||||
|
FILE *file = fopen(path, "rb");
|
||||||
|
|
||||||
|
if (file != NULL) {
|
||||||
|
if (checkFileHeader(file)) {
|
||||||
|
unsigned int inputDimension = readDimension(file);
|
||||||
|
unsigned int outputDimension = readDimension(file);
|
||||||
|
|
||||||
|
while (inputDimension > 0 && outputDimension > 0) {
|
||||||
|
Layer layer = readLayer(file, inputDimension, outputDimension);
|
||||||
|
Layer *layerBuffer = NULL;
|
||||||
|
|
||||||
|
if (isEmptyLayer(layer)) {
|
||||||
|
clearLayer(&layer);
|
||||||
|
clearModel(&model);
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
return matrix;
|
layerBuffer = (Layer *)realloc(
|
||||||
}
|
model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
|
||||||
|
|
||||||
static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
|
if (layerBuffer != NULL)
|
||||||
{
|
model.layers = layerBuffer;
|
||||||
Matrix result = inputBatch;
|
else {
|
||||||
|
clearModel(&model);
|
||||||
if(result.buffer != NULL)
|
break;
|
||||||
{
|
|
||||||
for(int i = 0; i < model.numberOfLayers; i++)
|
|
||||||
{
|
|
||||||
Matrix biasResult;
|
|
||||||
Matrix weightResult;
|
|
||||||
|
|
||||||
weightResult = multiply(model.layers[i].weights, result);
|
|
||||||
clearMatrix(&result);
|
|
||||||
biasResult = add(model.layers[i].biases, weightResult);
|
|
||||||
clearMatrix(&weightResult);
|
|
||||||
|
|
||||||
if(model.layers[i].activation != NULL)
|
|
||||||
model.layers[i].activation(&biasResult);
|
|
||||||
result = biasResult;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
model.layers[model.numberOfLayers] = layer;
|
||||||
|
model.numberOfLayers++;
|
||||||
|
|
||||||
|
inputDimension = outputDimension;
|
||||||
|
outputDimension = readDimension(file);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fclose(file);
|
||||||
|
|
||||||
|
assignActivations(model);
|
||||||
|
}
|
||||||
|
|
||||||
|
return model;
|
||||||
}
|
}
|
||||||
|
|
||||||
unsigned char *argmax(const Matrix matrix)
|
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[],
|
||||||
{
|
unsigned int count) {
|
||||||
unsigned char *maxIdx = NULL;
|
Matrix matrix = {0, 0, NULL}; // falsch herum
|
||||||
|
|
||||||
if(matrix.rows > 0 && matrix.cols > 0)
|
if (count > 0 && images != NULL) {
|
||||||
{
|
matrix = createMatrix(images[0].height * images[0].width, count);
|
||||||
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
|
|
||||||
|
|
||||||
if(maxIdx != NULL)
|
if (matrix.buffer != NULL) {
|
||||||
{
|
for (int i = 0; i < count; i++) {
|
||||||
for(int colIdx = 0; colIdx < matrix.cols; colIdx++)
|
for (int j = 0; j < images[i].width * images[i].height; j++) {
|
||||||
{
|
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
|
||||||
maxIdx[colIdx] = 0;
|
|
||||||
|
|
||||||
for(int rowIdx = 1; rowIdx < matrix.rows; rowIdx++)
|
|
||||||
{
|
|
||||||
if(getMatrixAt(matrix, rowIdx, colIdx) > getMatrixAt(matrix, maxIdx[colIdx], colIdx))
|
|
||||||
maxIdx[colIdx] = rowIdx;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return maxIdx;
|
return matrix;
|
||||||
}
|
}
|
||||||
|
|
||||||
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[], unsigned int numberOfImages)
|
static Matrix forward(const NeuralNetwork model, Matrix inputBatch) {
|
||||||
{
|
Matrix result = inputBatch;
|
||||||
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
|
|
||||||
Matrix outputBatch = forward(model, inputBatch);
|
|
||||||
|
|
||||||
unsigned char *result = argmax(outputBatch);
|
if (result.buffer != NULL) {
|
||||||
|
for (int i = 0; i < model.numberOfLayers; i++) {
|
||||||
clearMatrix(&outputBatch);
|
Matrix biasResult;
|
||||||
|
Matrix weightResult;
|
||||||
return result;
|
|
||||||
|
weightResult = multiply(model.layers[i].weights, result);
|
||||||
|
clearMatrix(&result);
|
||||||
|
biasResult = add(model.layers[i].biases, weightResult);
|
||||||
|
clearMatrix(&weightResult);
|
||||||
|
|
||||||
|
if (model.layers[i].activation != NULL)
|
||||||
|
model.layers[i].activation(&biasResult);
|
||||||
|
result = biasResult;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
void clearModel(NeuralNetwork *model)
|
unsigned char *argmax(const Matrix matrix) {
|
||||||
{
|
unsigned char *maxIdx = NULL;
|
||||||
if(model != NULL)
|
|
||||||
{
|
if (matrix.rows > 0 && matrix.cols > 0) {
|
||||||
for(int i = 0; i < model->numberOfLayers; i++)
|
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
|
||||||
{
|
|
||||||
clearLayer(&model->layers[i]);
|
if (maxIdx != NULL) {
|
||||||
|
for (int colIdx = 0; colIdx < matrix.cols; colIdx++) {
|
||||||
|
maxIdx[colIdx] = 0;
|
||||||
|
|
||||||
|
for (int rowIdx = 1; rowIdx < matrix.rows; rowIdx++) {
|
||||||
|
if (getMatrixAt(matrix, rowIdx, colIdx) >
|
||||||
|
getMatrixAt(matrix, maxIdx[colIdx], colIdx))
|
||||||
|
maxIdx[colIdx] = rowIdx;
|
||||||
}
|
}
|
||||||
model->layers = NULL;
|
}
|
||||||
model->numberOfLayers = 0;
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return maxIdx;
|
||||||
|
}
|
||||||
|
|
||||||
|
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
|
||||||
|
unsigned int numberOfImages) {
|
||||||
|
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
|
||||||
|
Matrix outputBatch = forward(model, inputBatch);
|
||||||
|
|
||||||
|
unsigned char *result = argmax(outputBatch);
|
||||||
|
|
||||||
|
clearMatrix(&outputBatch);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
void clearModel(NeuralNetwork *model) {
|
||||||
|
if (model != NULL) {
|
||||||
|
for (int i = 0; i < model->numberOfLayers; i++) {
|
||||||
|
clearLayer(&model->layers[i]);
|
||||||
|
}
|
||||||
|
model->layers = NULL;
|
||||||
|
model->numberOfLayers = 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
@ -1,242 +1,308 @@
|
|||||||
|
#include "neuralNetwork.h"
|
||||||
|
#include "unity.h"
|
||||||
|
#include <math.h>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
#include <math.h>
|
|
||||||
#include "unity.h"
|
|
||||||
#include "neuralNetwork.h"
|
|
||||||
|
|
||||||
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||||
|
FILE *f = fopen(path, "wb");
|
||||||
|
if (f == NULL)
|
||||||
|
return;
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
/* 1) Header: exakt das String, ohne '\n' oder abschließendes '\0' */
|
||||||
{
|
const char header[] = "__info2_neural_network_file_format__";
|
||||||
// TODO
|
fwrite(header, sizeof(char), strlen(header), f);
|
||||||
}
|
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
/* Wenn es keine Layer gibt, kein Dimensionspaar schreiben (loadModel
|
||||||
{
|
wird beim Lesen dann 0 zurückgeben). Aber wir können auch frühzeitig
|
||||||
const char *path = "some__nn_test_file.info2";
|
mit einem 0-Int terminieren — beides ist in Ordnung. */
|
||||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
if (nn.numberOfLayers == 0) {
|
||||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
/* optional: schreibe ein 0 als next outputDimension (nicht nötig) */
|
||||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
int zero = 0;
|
||||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
fwrite(&zero, sizeof(int), 1, f);
|
||||||
MatrixType buffer3[] = {1, 2, 3};
|
fclose(f);
|
||||||
MatrixType buffer4[] = {1, 2};
|
return;
|
||||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
}
|
||||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
/* 2) Für die erste Layer schreiben wir inputDimension und outputDimension */
|
||||||
NeuralNetwork netUnderTest;
|
/* inputDimension == weights.cols, outputDimension == weights.rows */
|
||||||
|
int inputDim = (int)nn.layers[0].weights.cols;
|
||||||
|
int outputDim = (int)nn.layers[0].weights.rows;
|
||||||
|
fwrite(&inputDim, sizeof(int), 1, f);
|
||||||
|
fwrite(&outputDim, sizeof(int), 1, f);
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
|
||||||
|
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
||||||
|
geschrieben. */
|
||||||
|
for (int i = 0; i < nn.numberOfLayers; i++) {
|
||||||
|
Layer layer = nn.layers[i];
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
int wrows = (int)layer.weights.rows;
|
||||||
remove(path);
|
int wcols = (int)layer.weights.cols;
|
||||||
|
int wcount = wrows * wcols;
|
||||||
|
int bcount =
|
||||||
|
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */
|
||||||
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
|
/* Gewichte (MatrixType binär) */
|
||||||
clearModel(&netUnderTest);
|
if (wcount > 0 && layer.weights.buffer != NULL) {
|
||||||
}
|
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, f);
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectWeightDimensions(void)
|
|
||||||
{
|
|
||||||
const char *path = "some__nn_test_file.info2";
|
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
|
||||||
remove(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
||||||
clearModel(&netUnderTest);
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectBiasDimensions(void)
|
|
||||||
{
|
|
||||||
const char *path = "some__nn_test_file.info2";
|
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
|
||||||
remove(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
|
|
||||||
clearModel(&netUnderTest);
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectWeights(void)
|
|
||||||
{
|
|
||||||
const char *path = "some__nn_test_file.info2";
|
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
|
||||||
remove(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
||||||
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
|
||||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
|
|
||||||
clearModel(&netUnderTest);
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectBiases(void)
|
|
||||||
{
|
|
||||||
const char *path = "some__nn_test_file.info2";
|
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
|
||||||
remove(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
|
||||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
|
||||||
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
|
||||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
|
|
||||||
clearModel(&netUnderTest);
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_loadModelFailsOnWrongFileTag(void)
|
|
||||||
{
|
|
||||||
const char *path = "some_nn_test_file.info2";
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
FILE *file = fopen(path, "wb");
|
|
||||||
|
|
||||||
if(file != NULL)
|
|
||||||
{
|
|
||||||
const char *fileTag = "info2_neural_network_file_format";
|
|
||||||
|
|
||||||
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
|
||||||
|
|
||||||
fclose(file);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
/* Biases (MatrixType binär) */
|
||||||
|
if (bcount > 0 && layer.biases.buffer != NULL) {
|
||||||
remove(path);
|
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, f);
|
||||||
|
|
||||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
|
||||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
|
||||||
}
|
|
||||||
|
|
||||||
void test_clearModelSetsMembersToNull(void)
|
|
||||||
{
|
|
||||||
const char *path = "some__nn_test_file.info2";
|
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
|
||||||
NeuralNetwork netUnderTest;
|
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
|
||||||
|
|
||||||
netUnderTest = loadModel(path);
|
|
||||||
remove(path);
|
|
||||||
|
|
||||||
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
|
||||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
|
||||||
clearModel(&netUnderTest);
|
|
||||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
|
||||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void someActivation(Matrix *matrix)
|
|
||||||
{
|
|
||||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
|
||||||
{
|
|
||||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */
|
||||||
|
if (i + 1 < nn.numberOfLayers) {
|
||||||
|
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
||||||
|
fwrite(&nextOutput, sizeof(int), 1, f);
|
||||||
|
} else {
|
||||||
|
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0
|
||||||
|
schreiben. loadModel liest dann outputDimension = 0 und beendet die
|
||||||
|
Schleife. */
|
||||||
|
int zero = 0;
|
||||||
|
fwrite(&zero, sizeof(int), 1, f);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fclose(f);
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_predictReturnsCorrectLabels(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
||||||
{
|
const char *path = "some__nn_test_file.info2";
|
||||||
const unsigned char expectedLabels[] = {4, 2};
|
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
MatrixType buffer3[] = {1, 2, 3};
|
||||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
MatrixType buffer4[] = {1, 2};
|
||||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
Layer layers[] = {{.weights = weights1, .biases = biases1},
|
||||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
{.weights = weights2, .biases = biases2}};
|
||||||
MatrixType biasBuffer1[] = {200, 0};
|
|
||||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
NeuralNetwork netUnderTest;
|
||||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
|
||||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
netUnderTest = loadModel(path);
|
||||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
remove(path);
|
||||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
|
||||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers,
|
||||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
netUnderTest.numberOfLayers);
|
||||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
clearModel(&netUnderTest);
|
||||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
}
|
||||||
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
|
||||||
free(predictedLabels);
|
void test_loadModelReturnsCorrectWeightDimensions(void) {
|
||||||
|
const char *path = "some__nn_test_file.info2";
|
||||||
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||||
|
netUnderTest.layers[0].weights.rows);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||||
|
netUnderTest.layers[0].weights.cols);
|
||||||
|
clearModel(&netUnderTest);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_loadModelReturnsCorrectBiasDimensions(void) {
|
||||||
|
const char *path = "some__nn_test_file.info2";
|
||||||
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows,
|
||||||
|
netUnderTest.layers[0].biases.rows);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols,
|
||||||
|
netUnderTest.layers[0].biases.cols);
|
||||||
|
clearModel(&netUnderTest);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_loadModelReturnsCorrectWeights(void) {
|
||||||
|
const char *path = "some__nn_test_file.info2";
|
||||||
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||||
|
netUnderTest.layers[0].weights.rows);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||||
|
netUnderTest.layers[0].weights.cols);
|
||||||
|
int n =
|
||||||
|
netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
||||||
|
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer,
|
||||||
|
netUnderTest.layers[0].weights.buffer, n);
|
||||||
|
clearModel(&netUnderTest);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_loadModelReturnsCorrectBiases(void) {
|
||||||
|
const char *path = "some__nn_test_file.info2";
|
||||||
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
|
||||||
|
netUnderTest.layers[0].weights.rows);
|
||||||
|
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
|
||||||
|
netUnderTest.layers[0].weights.cols);
|
||||||
|
int n =
|
||||||
|
netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
||||||
|
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer,
|
||||||
|
netUnderTest.layers[0].biases.buffer, n);
|
||||||
|
clearModel(&netUnderTest);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_loadModelFailsOnWrongFileTag(void) {
|
||||||
|
const char *path = "some_nn_test_file.info2";
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
FILE *file = fopen(path, "wb");
|
||||||
|
|
||||||
|
if (file != NULL) {
|
||||||
|
const char *fileTag = "info2_neural_network_file_format";
|
||||||
|
|
||||||
|
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||||
|
|
||||||
|
fclose(file);
|
||||||
|
}
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||||
|
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_clearModelSetsMembersToNull(void) {
|
||||||
|
const char *path = "some__nn_test_file.info2";
|
||||||
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
|
|
||||||
|
netUnderTest = loadModel(path);
|
||||||
|
remove(path);
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
||||||
|
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||||
|
clearModel(&netUnderTest);
|
||||||
|
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||||
|
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void someActivation(Matrix *matrix) {
|
||||||
|
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
|
||||||
|
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_predictReturnsCorrectLabels(void) {
|
||||||
|
const unsigned char expectedLabels[] = {4, 2};
|
||||||
|
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||||
|
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||||
|
GrayScaleImage inputImages[] = {
|
||||||
|
{.buffer = imageBuffer1, .width = 2, .height = 2},
|
||||||
|
{.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||||
|
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||||
|
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||||
|
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22,
|
||||||
|
23, -24, 25, 26, 27, -28, -29};
|
||||||
|
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||||
|
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||||
|
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||||
|
MatrixType biasBuffer1[] = {200, 0};
|
||||||
|
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||||
|
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||||
|
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||||
|
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||||
|
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||||
|
Layer layers[] = {
|
||||||
|
{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||||
|
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||||
|
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||||
|
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||||
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||||
|
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||||
|
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||||
|
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
||||||
|
free(predictedLabels);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void) {
|
void setUp(void) {
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void) {
|
void tearDown(void) {
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
int main()
|
int main() {
|
||||||
{
|
UNITY_BEGIN();
|
||||||
UNITY_BEGIN();
|
|
||||||
|
|
||||||
printf("\n============================\nNeural network tests\n============================\n");
|
printf("\n============================\nNeural network "
|
||||||
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
"tests\n============================\n");
|
||||||
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
||||||
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
||||||
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
||||||
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
||||||
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
||||||
RUN_TEST(test_clearModelSetsMembersToNull);
|
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
||||||
RUN_TEST(test_predictReturnsCorrectLabels);
|
RUN_TEST(test_clearModelSetsMembersToNull);
|
||||||
|
RUN_TEST(test_predictReturnsCorrectLabels);
|
||||||
|
|
||||||
return UNITY_END();
|
return UNITY_END();
|
||||||
}
|
}
|
||||||
Loading…
x
Reference in New Issue
Block a user