Compare commits

...

21 Commits

Author SHA1 Message Date
Kristin
2a1ff310db matrix.c aenderungen 2025-12-02 09:13:35 +01:00
Kristin
3c4e4df496 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into Krisp2 2025-11-25 10:41:30 +01:00
Kristin
fd1bc886a7 neu 2025-11-25 10:38:40 +01:00
Max-R
efa260ccbe 0 fehler bei add abfangen 2025-11-25 10:15:52 +01:00
Max-R
801abc1b66 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz 2025-11-25 10:00:31 +01:00
Max-R
8e518a3bdd Merge branch 'RMax' matrix.c voll 2025-11-25 09:58:03 +01:00
Max-R
0baf646832 add files to gitignore 2025-11-25 09:57:28 +01:00
98dd789680 input image things 2025-11-25 09:10:54 +01:00
Max-R
21d9b5c01d so finde ich es schöner... 2025-11-22 15:29:32 +01:00
Max-R
e7930c7eb0 kommentaare update 2025-11-22 15:23:50 +01:00
Max-R
5075c34983 kommentaare update 2025-11-22 15:19:41 +01:00
Max-R
b187a13b17 multiply, besteht MatrixTests 2025-11-22 15:17:12 +01:00
Max-R
4e2ee7078a alles bis uf multiply 2025-11-22 12:41:46 +01:00
Max-R
35a598a276 broadcasting 2025-11-22 11:54:32 +01:00
Max-R
e1ea9f33cd create matrix mit null 2025-11-22 10:55:27 +01:00
Max-R
0886489d49 Matrix noch ohne broadcasting 2025-11-20 16:03:44 +01:00
Max-R
f9c46a6784 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into RMax 2025-11-20 14:50:33 +01:00
Max-R
5fcc3cd042 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into RMax 2025-11-18 10:51:55 +01:00
Max-R
3de79e2b83 clearMatrix füllen 2025-11-11 11:05:28 +01:00
Max-R
ec54bdd951 create Matrix gefüllt, test unit 2025-11-11 10:36:11 +01:00
Max-R
0e3f03a03d Matrix definiert 2025-11-11 09:20:40 +01:00
9 changed files with 174 additions and 220 deletions

6
.gitignore vendored
View File

@ -2,3 +2,9 @@ mnist
runTests runTests
*.o *.o
*.exe *.exe
.vscode/settings.json
.vscode/launch.json
.vscode/settings.json
.vscode/settings.json
runImageInputTests
testFile.info2

View File

@ -4,6 +4,8 @@
#include <string.h> #include <string.h>
#define FILE_HEADER_STRING "__info2_image_file_format__" #define FILE_HEADER_STRING "__info2_image_file_format__"
// define BUFFER 100
// 10x10 pixel
/* ---------------------------------------------------------- /* ----------------------------------------------------------
1. Header prüfen 1. Header prüfen
@ -28,6 +30,7 @@ static int readMeta(FILE *file, unsigned short *count, unsigned short *width,
return 0; return 0;
if (fread(height, sizeof(unsigned short), 1, file) != 1) if (fread(height, sizeof(unsigned short), 1, file) != 1)
return 0; return 0;
return 1; return 1;
} }
@ -39,14 +42,14 @@ static int readSingleImage(FILE *file, GrayScaleImage *img,
img->width = width; img->width = width;
img->height = height; img->height = height;
size_t numPixels = (size_t)width * (size_t)height; size_t numPixels = (size_t)width * (size_t)height; // anzahl an pixeln
img->buffer = malloc(numPixels); img->buffer = malloc(numPixels);
if (!img->buffer) if (!img->buffer)
return 0; return 0;
if (fread(img->buffer, 1, numPixels, file) != numPixels) { if (fread(img->buffer, 1, numPixels, file) != numPixels) {
free(img->buffer); free(img->buffer);
img->buffer = NULL; img->buffer = NULL; // fehler bei ungültiger eingabe
return 0; return 0;
} }
return 1; return 1;
@ -74,9 +77,11 @@ GrayScaleImageSeries *readImages(const char *path) {
unsigned short count, width, height; unsigned short count, width, height;
if (!readMeta(file, &count, &width, &height)) { if (!readMeta(file, &count, &width, &height)) {
fclose(file); fclose(file);
return NULL; return NULL;
} }
// printf("%d, %d, %d", count, width, height);
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries)); GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
if (!series) { if (!series) {

View File

@ -126,19 +126,25 @@ void test_readImagesFailsOnWrongFileTag(void) {
remove(path); remove(path);
} }
void test_read_GrayScale_Pixel(void) { // Test
GrayScaleImageSeries *series = NULL;
void test_read_GrayScale_Pixel(
void) { // testet das einlesen eines graustufenbildes von readImages()
GrayScaleImageSeries *series = NULL; // enthält später das Bild
const char *path = "testFile.info2"; const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, 1, 1); prepareImageFile(path, 8, 8, 1,
1); // Höhe x Breite in Pixel, Anzahl Bilder und Kategorie
series = readImages(path); series = readImages(path);
TEST_ASSERT_NOT_NULL(series); TEST_ASSERT_NOT_NULL(series); // Speicher reservieren
TEST_ASSERT_NOT_NULL(series->images); TEST_ASSERT_NOT_NULL(series->images); // Inhalt ist da
TEST_ASSERT_EQUAL_UINT(1, series->count); TEST_ASSERT_EQUAL_UINT(1, series->count); // Anzahl der Bilder stimmt
for (int i = 0; i < (8 * 8); i++) { for (int i = 0; i < (8 * 8); i++) {
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images[0].buffer[i]); TEST_ASSERT_EQUAL_UINT8(
(GrayScalePixelType)i,
series->images[0].buffer[i]); // alle Pixelwerte prüfen
} }
clearSeries(series); clearSeries(series);

View File

@ -59,7 +59,8 @@ imageInputTests: imageInput.o imageInputTests.c $(unityfolder)/unity.c
# -------------------------- # --------------------------
clean: clean:
ifeq ($(OS),Windows_NT) ifeq ($(OS),Windows_NT)
del /f *.o *.exe
else
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
else
del /f *.o *.exe
endif endif

278
matrix.c
View File

@ -3,35 +3,22 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
// TODO Matrix-Funktionen implementieren
/*typedef struct { /*typedef struct {
unsigned int rows; //Zeilen unsigned int rows; //Zeilen
unsigned int cols; //Spalten unsigned int cols; //Spalten
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
} Matrix;*/ } Matrix;*/
Matrix createMatrix(unsigned int rows, unsigned int cols) {
Matrix matrix;
Matrix errorMatrix = {0, 0, NULL};
if (rows == 0 || cols == 0) {
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
if (cols == 0 || rows == 0) {
Matrix errorMatrix = {0, 0, NULL};
return errorMatrix; return errorMatrix;
} }
matrix.rows = rows; MatrixType *buffer =
matrix.cols = cols; malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
// liefert Zeiger auf Speicher
matrix.buffer = malloc(rows * cols * sizeof(MatrixType)); Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
if (matrix.buffer == NULL) { return newMatrix;
matrix.rows = 0;
matrix.cols = 0;
return matrix;
}
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
}
}
return matrix;
} }
void clearMatrix(Matrix *matrix) { void clearMatrix(Matrix *matrix) {
@ -47,18 +34,18 @@ void setMatrixAt(const MatrixType value, Matrix matrix,
const unsigned int rowIdx, // Kopie der Matrix wird übergeben const unsigned int rowIdx, // Kopie der Matrix wird übergeben
const unsigned int colIdx) { const unsigned int colIdx) {
if (rowIdx >= matrix.rows || colIdx >= matrix.cols || if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
matrix.buffer == NULL) { // Speichergröße nicht überschreiten // Speichergröße nicht überschreiten
return; return;
} }
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
matrix.buffer[rowIdx * matrix.cols + colIdx] = // rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
value; // rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
// innerhalb der Zeile // innerhalb der Zeile
} }
MatrixType getMatrixAt(const Matrix matrix, MatrixType
unsigned int rowIdx, // Kopie der Matrix wird übergeben getMatrixAt(const Matrix matrix,
unsigned int colIdx) { const unsigned int rowIdx, // Kopie der Matrix wird übergeben
const unsigned int colIdx) {
if (rowIdx >= matrix.rows || colIdx >= matrix.cols || if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten matrix.buffer == NULL) { // Speichergröße nicht überschreiten
return UNDEFINED_MATRIX_VALUE; return UNDEFINED_MATRIX_VALUE;
@ -68,187 +55,134 @@ MatrixType getMatrixAt(const Matrix matrix,
return value; return value;
} }
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
Matrix broadCastCols(const Matrix matrix, const unsigned int rows, Matrix copy1 = createMatrix(matrix.rows, cols);
const unsigned int cols) { for (int r = 0; r < matrix.rows; r++) {
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
Matrix copy = createMatrix(
rows, cols); // Matrix 1 Kopie erstellen mit Dimensionen von Matrix2
for (int r = 0; r < rows; r++) {
MatrixType value = getMatrixAt(matrix, r, 0);
for (int c = 0; c < cols; c++) { for (int c = 0; c < cols; c++) {
setMatrixAt(valueMatrix1, copy1, r, c);
setMatrixAt(value, copy, r, c);
} }
} }
return copy1;
return copy;
} }
Matrix broadCastRows(const Matrix matrix, const unsigned int rows, Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
const unsigned int cols) { Matrix copy1 = createMatrix(rows, matrix.cols);
for (int c = 0; c < matrix.cols; c++) {
Matrix copy = createMatrix(rows, cols); MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
for (int c = 0; c < cols; c++) {
MatrixType value = getMatrixAt(matrix, 0, c);
for (int r = 0; r < rows; r++) { for (int r = 0; r < rows; r++) {
setMatrixAt(valueMatrix1, copy1, r, c);
setMatrixAt(value, copy, r, c);
} }
} }
return copy1;
return copy;
} }
Matrix add(const Matrix matrix1, const Matrix matrix2) { Matrix add(const Matrix matrix1, const Matrix matrix2) {
const unsigned int rows1 = matrix1.rows; // Ergebnismatrix
const unsigned int rows2 = matrix2.rows; Matrix result;
const unsigned int cols1 = matrix1.cols; const int cols1 = matrix1.cols;
const unsigned int cols2 = matrix2.cols; const int rows1 = matrix1.rows;
const int cols2 = matrix2.cols;
const int rows2 = matrix2.rows;
const int rowsEqual = ((rows1 == rows2) ? 1 : 0); const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
const int colsEqual = ((cols1 == cols2) ? 1 : 0); // Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
// Matrix
if (rowsEqual && colsEqual) // addieren if (rowsEqual == 1 && colsEqual == 1) {
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
{
Matrix result = createMatrix(rows1, cols1); // Speicher reservieren
if (result.buffer == NULL) { if (result.buffer == NULL) {
return (Matrix){0, 0, NULL}; return (Matrix){0, 0, NULL};
} }
for (int i = 0; i < rows1; i++) {
for (int i = 0; i < (rows1 * cols1); i++) { // addieren for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
result.buffer[i] = int valueM2 = getMatrixAt(matrix2, i, j);
(matrix1.buffer[i] + int sum = valueM1 + valueM2;
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse = setMatrixAt(sum, result, i, j);
// Startadresse + (i * sizeof(MatrixType))
} }
return result; // zurückgeben
} }
else if (rowsEqual && !colsEqual) {
if (cols1 == 1) {
Matrix result = createMatrix(rows2, cols2);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
Matrix copy1 = broadCastCols(matrix1, rows2, cols2);
if (!copy1.buffer) {
clearMatrix(&result);
return (Matrix){0, 0, NULL};
}
for (unsigned int i = 0; i < rows2 * cols2; i++) {
result.buffer[i] = copy1.buffer[i] + matrix2.buffer[i];
}
/* freigeben, weil nicht mehr benötigt */
clearMatrix(&copy1);
return result; return result;
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
// add und return if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
Matrix newMatrix = broadCastCols(matrix1, cols2);
} else if (cols2 == 1) { // add
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
Matrix result = createMatrix(rows1, cols1);
if (result.buffer == NULL) { if (result.buffer == NULL) {
Matrix error = {0, 0, NULL}; return (Matrix){0, 0, NULL};
return error; }
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols2; j++) {
int valueM1 = getMatrixAt(newMatrix, i, j);
int valueM2 = getMatrixAt(matrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
clearMatrix(&newMatrix);
return result;
} else {
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
// add
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
int valueM2 = getMatrixAt(newMatrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
} }
// Matrix2 hat nur eine Spalte -> horizontal broadcasten
Matrix copy2 = broadCastCols(matrix2, rows1, cols1);
for (unsigned int i = 0; i < rows1 * cols1; i++) {
result.buffer[i] = matrix1.buffer[i] + copy2.buffer[i];
} }
// Optional: Speicher von copy2 freigeben
clearMatrix(&copy2);
return result; return result;
} }
else {
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
// Programmabbruch
Matrix error = {0, 0, NULL};
return error;
} }
} else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
else if (!rowsEqual && colsEqual) {
if (rows1 == 1) { if (rows1 == 1) {
Matrix newMatrix = broadCastRows(matrix1, rows2);
Matrix result = createMatrix(rows2, cols2); // add
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
if (result.buffer == NULL) { if (result.buffer == NULL) {
return (Matrix){0, 0, NULL}; return (Matrix){0, 0, NULL};
} }
for (int i = 0; i < rows2; i++) {
Matrix copy1 = broadCastRows(matrix1, rows2, cols2); for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(newMatrix, i, j);
for (int i = 0; i < (rows2 * cols2); i++) { // addieren int valueM2 = getMatrixAt(matrix2, i, j);
int sum = valueM1 + valueM2;
result.buffer[i] = setMatrixAt(sum, result, i, j);
(copy1.buffer[i] + }
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
// Startadresse + (i * sizeof(MatrixType))
} }
return result; return result;
} else {
// add und return Matrix newMatrix2 = broadCastRows(matrix2, rows1);
// add
} else if (rows2 == 1) { Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
Matrix result = createMatrix(rows1, cols1);
if (result.buffer == NULL) { if (result.buffer == NULL) {
return (Matrix){0, 0, NULL}; return (Matrix){0, 0, NULL};
} }
for (int i = 0; i < rows1; i++) {
Matrix copy2 = broadCastRows(matrix2, rows1, cols1); for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
// add und return int valueM2 = getMatrixAt(newMatrix2, i, j);
int sum = valueM1 + valueM2;
for (int i = 0; i < (rows1 * cols1); i++) { // addieren setMatrixAt(sum, result, i, j);
}
result.buffer[i] = }
(matrix1.buffer[i] + clearMatrix(&newMatrix2);
copy2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse = return result;
// Startadresse + (i * sizeof(MatrixType)) }
} else {
// kein add möglich
Matrix errorMatrix = {0, 0, NULL};
return errorMatrix;
} }
return result; return result;
} }
else {
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
// Programmabbruch
Matrix error = {0, 0, NULL};
return error;
}
}
else {
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
// Programmabbruch
Matrix error = {0, 0, NULL};
return error;
}
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2) { Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren // Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
if (matrix1.cols == matrix2.rows) { if (matrix1.cols == matrix2.rows) {

View File

@ -13,17 +13,15 @@ typedef struct {
} Matrix; } Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols); Matrix createMatrix(const unsigned int rows, const unsigned int cols);
void clearMatrix(Matrix *matrix); void clearMatrix(Matrix *matrix);
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, void setMatrixAt(const MatrixType value, Matrix matrix,
unsigned int colIdx); const unsigned int rowIdx, const unsigned int colIdx);
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, MatrixType getMatrixAt(const Matrix matrix, const unsigned int rowIdx,
unsigned int colIdx); const unsigned int colIdx);
Matrix broadCastCols(const Matrix matrix, const unsigned int rows, Matrix broadCastCols(const Matrix matrix, const unsigned int cols);
const unsigned int cols); Matrix broadCastRows(const Matrix matrix, const unsigned int rows);
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
const unsigned int cols);
Matrix add(const Matrix matrix1, const Matrix matrix2); Matrix add(const Matrix matrix1, const Matrix matrix2);
Matrix multiply(const Matrix matrix1, const Matrix matrix2); Matrix multiply(const Matrix matrix1, const Matrix matrix2);

View File

@ -28,68 +28,72 @@ Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
Dimension: Form der Matrizen für einen Layer*/ Dimension: Form der Matrizen für einen Layer*/
// speichert NeuralNetwork nn in binäre Datei->erzeugt Dateiformat /* Gewichtsmatrix der Layer:
*/
// speichert NeuralNetwork nn in binäre Datei->später kann es wieder geöffnet
// werden
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
FILE *f = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
if (f == NULL) if (fptr == NULL)
return; return; // file konnte nicht geöffnet werden
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt // Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
// Dateiformat // Dateiformat
const char header[] = "__info2_neural_network_file_format__"; const char header[] = "__info2_neural_network_file_format__"; // header string
fwrite(header, sizeof(char), strlen(header), f); fwrite(header, sizeof(char), strlen(header),
fptr); // der header wird am Anfang der Datei platziert
// Wenn es keine Layer gibt, 0 eintragen, LoadModel gibt 0 zurück // Wenn es keine Layer gibt, 0 eintragen, LoadModel erkennt, dass Datei leer
// ist
if (nn.numberOfLayers == 0) { if (nn.numberOfLayers == 0) {
int zero = 0; int zero = 0;
fwrite(&zero, sizeof(int), 1, f); fwrite(&zero, sizeof(int), 1, fptr);
fclose(f); fclose(fptr);
return; return;
} }
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl // Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
// Output-Neuronen // Output-Neuronen wird in Datei eingefügt
int inputDim = (int)nn.layers[0].weights.cols; int inputDim = (int)nn.layers[0].weights.cols;
int outputDim = (int)nn.layers[0].weights.rows; int outputDim = (int)nn.layers[0].weights.rows;
fwrite(&inputDim, sizeof(int), 1, f); fwrite(&inputDim, sizeof(int), 1, fptr);
fwrite(&outputDim, sizeof(int), 1, f); fwrite(&outputDim, sizeof(int), 1, fptr);
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output /* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
x 1). Zwischen Layern wird nur die nächste outputDimension (int) x 1). Zwischen Layern wird nur die nächste outputDimension (int)
geschrieben. */ geschrieben. */
for (int i = 0; i < nn.numberOfLayers; i++) { for (int i = 0; i < nn.numberOfLayers; i++) {
Layer layer = nn.layers[i]; Layer layer = nn.layers[i]; // kürzer, durch alle layer iterieren
int wrows = (int)layer.weights.rows; int wrows = (int)layer.weights.rows;
int wcols = (int)layer.weights.cols; int wcols = (int)layer.weights.cols;
int wcount = wrows * wcols; int wcount = wrows * wcols; // Anzahl Gewichtseinträge
int bcount = int bcount =
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */ layer.biases.rows * layer.biases.cols; // Anzahl der Bias-Einträge
/* Gewichte (MatrixType binär) */ /* Gewichte */
if (wcount > 0 && layer.weights.buffer != NULL) { if (wcount > 0 && layer.weights.buffer != NULL) {
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, f); fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
} } // Gewichte werden als Matrix gespeichert
/* Biases (MatrixType binär) */ /* Biases */
if (bcount > 0 && layer.biases.buffer != NULL) { if (bcount > 0 && layer.biases.buffer != NULL) {
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, f); fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
} } // Biases werden als Vektor gespeichert
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */ /* outputDimensionen der nächsten Layer */
if (i + 1 < nn.numberOfLayers) { if (i + 1 < nn.numberOfLayers) {
int nextOutput = (int)nn.layers[i + 1].weights.rows; int nextOutput = (int)nn.layers[i + 1].weights.rows;
fwrite(&nextOutput, sizeof(int), 1, f); fwrite(&nextOutput, sizeof(int), 1, fptr);
} else { } else {
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0 // loadModel erkennt 0 als Ende der Datei
schreiben. loadModel liest dann outputDimension = 0 und beendet die
Schleife. */
int zero = 0; int zero = 0;
fwrite(&zero, sizeof(int), 1, f); fwrite(&zero, sizeof(int), 1, fptr);
} }
} }
fclose(f); fclose(fptr); // Datei schließen
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) { void test_loadModelReturnsCorrectNumberOfLayers(void) {