forked from freudenreichan/info2Praktikum-NeuronalesNetz
Compare commits
21 Commits
0f0f2f19c3
...
2a1ff310db
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2a1ff310db | ||
|
|
3c4e4df496 | ||
|
|
fd1bc886a7 | ||
|
|
efa260ccbe | ||
|
|
801abc1b66 | ||
|
|
8e518a3bdd | ||
|
|
0baf646832 | ||
| 98dd789680 | |||
|
|
21d9b5c01d | ||
|
|
e7930c7eb0 | ||
|
|
5075c34983 | ||
|
|
b187a13b17 | ||
|
|
4e2ee7078a | ||
|
|
35a598a276 | ||
|
|
e1ea9f33cd | ||
|
|
0886489d49 | ||
|
|
f9c46a6784 | ||
|
|
5fcc3cd042 | ||
|
|
3de79e2b83 | ||
|
|
ec54bdd951 | ||
|
|
0e3f03a03d |
6
.gitignore
vendored
6
.gitignore
vendored
@ -2,3 +2,9 @@ mnist
|
|||||||
runTests
|
runTests
|
||||||
*.o
|
*.o
|
||||||
*.exe
|
*.exe
|
||||||
|
.vscode/settings.json
|
||||||
|
.vscode/launch.json
|
||||||
|
.vscode/settings.json
|
||||||
|
.vscode/settings.json
|
||||||
|
runImageInputTests
|
||||||
|
testFile.info2
|
||||||
@ -4,6 +4,8 @@
|
|||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
||||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||||
|
// define BUFFER 100
|
||||||
|
// 10x10 pixel
|
||||||
|
|
||||||
/* ----------------------------------------------------------
|
/* ----------------------------------------------------------
|
||||||
1. Header prüfen
|
1. Header prüfen
|
||||||
@ -28,6 +30,7 @@ static int readMeta(FILE *file, unsigned short *count, unsigned short *width,
|
|||||||
return 0;
|
return 0;
|
||||||
if (fread(height, sizeof(unsigned short), 1, file) != 1)
|
if (fread(height, sizeof(unsigned short), 1, file) != 1)
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -39,14 +42,14 @@ static int readSingleImage(FILE *file, GrayScaleImage *img,
|
|||||||
img->width = width;
|
img->width = width;
|
||||||
img->height = height;
|
img->height = height;
|
||||||
|
|
||||||
size_t numPixels = (size_t)width * (size_t)height;
|
size_t numPixels = (size_t)width * (size_t)height; // anzahl an pixeln
|
||||||
img->buffer = malloc(numPixels);
|
img->buffer = malloc(numPixels);
|
||||||
if (!img->buffer)
|
if (!img->buffer)
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
|
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
|
||||||
free(img->buffer);
|
free(img->buffer);
|
||||||
img->buffer = NULL;
|
img->buffer = NULL; // fehler bei ungültiger eingabe
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
return 1;
|
return 1;
|
||||||
@ -74,9 +77,11 @@ GrayScaleImageSeries *readImages(const char *path) {
|
|||||||
|
|
||||||
unsigned short count, width, height;
|
unsigned short count, width, height;
|
||||||
if (!readMeta(file, &count, &width, &height)) {
|
if (!readMeta(file, &count, &width, &height)) {
|
||||||
|
|
||||||
fclose(file);
|
fclose(file);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
// printf("%d, %d, %d", count, width, height);
|
||||||
|
|
||||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
||||||
if (!series) {
|
if (!series) {
|
||||||
|
|||||||
@ -126,19 +126,25 @@ void test_readImagesFailsOnWrongFileTag(void) {
|
|||||||
remove(path);
|
remove(path);
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_read_GrayScale_Pixel(void) {
|
// Test
|
||||||
GrayScaleImageSeries *series = NULL;
|
|
||||||
|
void test_read_GrayScale_Pixel(
|
||||||
|
void) { // testet das einlesen eines graustufenbildes von readImages()
|
||||||
|
GrayScaleImageSeries *series = NULL; // enthält später das Bild
|
||||||
const char *path = "testFile.info2";
|
const char *path = "testFile.info2";
|
||||||
|
|
||||||
prepareImageFile(path, 8, 8, 1, 1);
|
prepareImageFile(path, 8, 8, 1,
|
||||||
|
1); // Höhe x Breite in Pixel, Anzahl Bilder und Kategorie
|
||||||
series = readImages(path);
|
series = readImages(path);
|
||||||
|
|
||||||
TEST_ASSERT_NOT_NULL(series);
|
TEST_ASSERT_NOT_NULL(series); // Speicher reservieren
|
||||||
TEST_ASSERT_NOT_NULL(series->images);
|
TEST_ASSERT_NOT_NULL(series->images); // Inhalt ist da
|
||||||
TEST_ASSERT_EQUAL_UINT(1, series->count);
|
TEST_ASSERT_EQUAL_UINT(1, series->count); // Anzahl der Bilder stimmt
|
||||||
|
|
||||||
for (int i = 0; i < (8 * 8); i++) {
|
for (int i = 0; i < (8 * 8); i++) {
|
||||||
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images[0].buffer[i]);
|
TEST_ASSERT_EQUAL_UINT8(
|
||||||
|
(GrayScalePixelType)i,
|
||||||
|
series->images[0].buffer[i]); // alle Pixelwerte prüfen
|
||||||
}
|
}
|
||||||
|
|
||||||
clearSeries(series);
|
clearSeries(series);
|
||||||
|
|||||||
5
makefile
5
makefile
@ -59,7 +59,8 @@ imageInputTests: imageInput.o imageInputTests.c $(unityfolder)/unity.c
|
|||||||
# --------------------------
|
# --------------------------
|
||||||
clean:
|
clean:
|
||||||
ifeq ($(OS),Windows_NT)
|
ifeq ($(OS),Windows_NT)
|
||||||
del /f *.o *.exe
|
|
||||||
else
|
|
||||||
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
|
||||||
|
else
|
||||||
|
del /f *.o *.exe
|
||||||
endif
|
endif
|
||||||
|
|
||||||
278
matrix.c
278
matrix.c
@ -3,35 +3,22 @@
|
|||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
||||||
// TODO Matrix-Funktionen implementieren
|
|
||||||
/*typedef struct {
|
/*typedef struct {
|
||||||
unsigned int rows; //Zeilen
|
unsigned int rows; //Zeilen
|
||||||
unsigned int cols; //Spalten
|
unsigned int cols; //Spalten
|
||||||
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
|
||||||
} Matrix;*/
|
} Matrix;*/
|
||||||
Matrix createMatrix(unsigned int rows, unsigned int cols) {
|
|
||||||
Matrix matrix;
|
|
||||||
Matrix errorMatrix = {0, 0, NULL};
|
|
||||||
if (rows == 0 || cols == 0) {
|
|
||||||
|
|
||||||
|
Matrix createMatrix(const unsigned int rows, const unsigned int cols) {
|
||||||
|
if (cols == 0 || rows == 0) {
|
||||||
|
Matrix errorMatrix = {0, 0, NULL};
|
||||||
return errorMatrix;
|
return errorMatrix;
|
||||||
}
|
}
|
||||||
matrix.rows = rows;
|
MatrixType *buffer =
|
||||||
matrix.cols = cols;
|
malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
|
||||||
|
// liefert Zeiger auf Speicher
|
||||||
matrix.buffer = malloc(rows * cols * sizeof(MatrixType));
|
Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
|
||||||
if (matrix.buffer == NULL) {
|
return newMatrix;
|
||||||
matrix.rows = 0;
|
|
||||||
matrix.cols = 0;
|
|
||||||
return matrix;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < rows; i++) {
|
|
||||||
for (int j = 0; j < cols; j++) {
|
|
||||||
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return matrix;
|
|
||||||
}
|
}
|
||||||
void clearMatrix(Matrix *matrix) {
|
void clearMatrix(Matrix *matrix) {
|
||||||
|
|
||||||
@ -47,18 +34,18 @@ void setMatrixAt(const MatrixType value, Matrix matrix,
|
|||||||
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||||
const unsigned int colIdx) {
|
const unsigned int colIdx) {
|
||||||
|
|
||||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
|
||||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
// Speichergröße nicht überschreiten
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
||||||
matrix.buffer[rowIdx * matrix.cols + colIdx] =
|
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
||||||
value; // rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
|
|
||||||
// innerhalb der Zeile
|
// innerhalb der Zeile
|
||||||
}
|
}
|
||||||
MatrixType getMatrixAt(const Matrix matrix,
|
MatrixType
|
||||||
unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
getMatrixAt(const Matrix matrix,
|
||||||
unsigned int colIdx) {
|
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
|
||||||
|
const unsigned int colIdx) {
|
||||||
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
|
||||||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
|
||||||
return UNDEFINED_MATRIX_VALUE;
|
return UNDEFINED_MATRIX_VALUE;
|
||||||
@ -68,187 +55,134 @@ MatrixType getMatrixAt(const Matrix matrix,
|
|||||||
|
|
||||||
return value;
|
return value;
|
||||||
}
|
}
|
||||||
|
Matrix broadCastCols(const Matrix matrix, const unsigned int cols) {
|
||||||
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
|
Matrix copy1 = createMatrix(matrix.rows, cols);
|
||||||
const unsigned int cols) {
|
for (int r = 0; r < matrix.rows; r++) {
|
||||||
|
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
|
||||||
Matrix copy = createMatrix(
|
|
||||||
rows, cols); // Matrix 1 Kopie erstellen mit Dimensionen von Matrix2
|
|
||||||
for (int r = 0; r < rows; r++) {
|
|
||||||
|
|
||||||
MatrixType value = getMatrixAt(matrix, r, 0);
|
|
||||||
for (int c = 0; c < cols; c++) {
|
for (int c = 0; c < cols; c++) {
|
||||||
|
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||||
setMatrixAt(value, copy, r, c);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return copy1;
|
||||||
return copy;
|
|
||||||
}
|
}
|
||||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
|
Matrix broadCastRows(const Matrix matrix, const unsigned int rows) {
|
||||||
const unsigned int cols) {
|
Matrix copy1 = createMatrix(rows, matrix.cols);
|
||||||
|
for (int c = 0; c < matrix.cols; c++) {
|
||||||
Matrix copy = createMatrix(rows, cols);
|
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
|
||||||
|
|
||||||
for (int c = 0; c < cols; c++) {
|
|
||||||
MatrixType value = getMatrixAt(matrix, 0, c);
|
|
||||||
|
|
||||||
for (int r = 0; r < rows; r++) {
|
for (int r = 0; r < rows; r++) {
|
||||||
|
setMatrixAt(valueMatrix1, copy1, r, c);
|
||||||
setMatrixAt(value, copy, r, c);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return copy1;
|
||||||
return copy;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
Matrix add(const Matrix matrix1, const Matrix matrix2) {
|
||||||
|
|
||||||
const unsigned int rows1 = matrix1.rows;
|
// Ergebnismatrix
|
||||||
const unsigned int rows2 = matrix2.rows;
|
Matrix result;
|
||||||
const unsigned int cols1 = matrix1.cols;
|
const int cols1 = matrix1.cols;
|
||||||
const unsigned int cols2 = matrix2.cols;
|
const int rows1 = matrix1.rows;
|
||||||
|
const int cols2 = matrix2.cols;
|
||||||
|
const int rows2 = matrix2.rows;
|
||||||
|
|
||||||
const int rowsEqual = ((rows1 == rows2) ? 1 : 0);
|
const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
|
||||||
|
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
|
||||||
|
|
||||||
const int colsEqual = ((cols1 == cols2) ? 1 : 0);
|
// Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
|
||||||
|
// Matrix
|
||||||
if (rowsEqual && colsEqual) // addieren
|
if (rowsEqual == 1 && colsEqual == 1) {
|
||||||
|
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
|
||||||
{
|
|
||||||
Matrix result = createMatrix(rows1, cols1); // Speicher reservieren
|
|
||||||
if (result.buffer == NULL) {
|
if (result.buffer == NULL) {
|
||||||
return (Matrix){0, 0, NULL};
|
return (Matrix){0, 0, NULL};
|
||||||
}
|
}
|
||||||
|
for (int i = 0; i < rows1; i++) {
|
||||||
for (int i = 0; i < (rows1 * cols1); i++) { // addieren
|
for (int j = 0; j < cols1; j++) {
|
||||||
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||||
result.buffer[i] =
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||||
(matrix1.buffer[i] +
|
int sum = valueM1 + valueM2;
|
||||||
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
setMatrixAt(sum, result, i, j);
|
||||||
// Startadresse + (i * sizeof(MatrixType))
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return result; // zurückgeben
|
|
||||||
}
|
}
|
||||||
|
|
||||||
else if (rowsEqual && !colsEqual) {
|
|
||||||
|
|
||||||
if (cols1 == 1) {
|
|
||||||
|
|
||||||
Matrix result = createMatrix(rows2, cols2);
|
|
||||||
if (result.buffer == NULL) {
|
|
||||||
return (Matrix){0, 0, NULL};
|
|
||||||
}
|
|
||||||
|
|
||||||
Matrix copy1 = broadCastCols(matrix1, rows2, cols2);
|
|
||||||
if (!copy1.buffer) {
|
|
||||||
clearMatrix(&result);
|
|
||||||
return (Matrix){0, 0, NULL};
|
|
||||||
}
|
|
||||||
|
|
||||||
for (unsigned int i = 0; i < rows2 * cols2; i++) {
|
|
||||||
result.buffer[i] = copy1.buffer[i] + matrix2.buffer[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
/* freigeben, weil nicht mehr benötigt */
|
|
||||||
clearMatrix(©1);
|
|
||||||
return result;
|
return result;
|
||||||
|
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
|
||||||
// add und return
|
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
|
||||||
|
Matrix newMatrix = broadCastCols(matrix1, cols2);
|
||||||
} else if (cols2 == 1) {
|
// add
|
||||||
|
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||||
Matrix result = createMatrix(rows1, cols1);
|
|
||||||
if (result.buffer == NULL) {
|
if (result.buffer == NULL) {
|
||||||
Matrix error = {0, 0, NULL};
|
return (Matrix){0, 0, NULL};
|
||||||
return error;
|
}
|
||||||
|
for (int i = 0; i < rows1; i++) {
|
||||||
|
for (int j = 0; j < cols2; j++) {
|
||||||
|
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||||
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||||
|
int sum = valueM1 + valueM2;
|
||||||
|
setMatrixAt(sum, result, i, j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
clearMatrix(&newMatrix);
|
||||||
|
return result;
|
||||||
|
} else {
|
||||||
|
Matrix newMatrix2 = broadCastCols(matrix2, cols1);
|
||||||
|
// add
|
||||||
|
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||||
|
if (result.buffer == NULL) {
|
||||||
|
return (Matrix){0, 0, NULL};
|
||||||
|
}
|
||||||
|
for (int i = 0; i < rows1; i++) {
|
||||||
|
for (int j = 0; j < cols1; j++) {
|
||||||
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||||
|
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||||
|
int sum = valueM1 + valueM2;
|
||||||
|
setMatrixAt(sum, result, i, j);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Matrix2 hat nur eine Spalte -> horizontal broadcasten
|
|
||||||
Matrix copy2 = broadCastCols(matrix2, rows1, cols1);
|
|
||||||
|
|
||||||
for (unsigned int i = 0; i < rows1 * cols1; i++) {
|
|
||||||
result.buffer[i] = matrix1.buffer[i] + copy2.buffer[i];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Optional: Speicher von copy2 freigeben
|
|
||||||
clearMatrix(©2);
|
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
else {
|
|
||||||
|
|
||||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
|
||||||
// Programmabbruch
|
|
||||||
Matrix error = {0, 0, NULL};
|
|
||||||
return error;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
|
||||||
|
|
||||||
else if (!rowsEqual && colsEqual) {
|
|
||||||
|
|
||||||
if (rows1 == 1) {
|
if (rows1 == 1) {
|
||||||
|
Matrix newMatrix = broadCastRows(matrix1, rows2);
|
||||||
Matrix result = createMatrix(rows2, cols2);
|
// add
|
||||||
|
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
|
||||||
if (result.buffer == NULL) {
|
if (result.buffer == NULL) {
|
||||||
return (Matrix){0, 0, NULL};
|
return (Matrix){0, 0, NULL};
|
||||||
}
|
}
|
||||||
|
for (int i = 0; i < rows2; i++) {
|
||||||
Matrix copy1 = broadCastRows(matrix1, rows2, cols2);
|
for (int j = 0; j < cols1; j++) {
|
||||||
|
int valueM1 = getMatrixAt(newMatrix, i, j);
|
||||||
for (int i = 0; i < (rows2 * cols2); i++) { // addieren
|
int valueM2 = getMatrixAt(matrix2, i, j);
|
||||||
|
int sum = valueM1 + valueM2;
|
||||||
result.buffer[i] =
|
setMatrixAt(sum, result, i, j);
|
||||||
(copy1.buffer[i] +
|
}
|
||||||
matrix2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
|
||||||
// Startadresse + (i * sizeof(MatrixType))
|
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
|
} else {
|
||||||
// add und return
|
Matrix newMatrix2 = broadCastRows(matrix2, rows1);
|
||||||
|
// add
|
||||||
} else if (rows2 == 1) {
|
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
|
||||||
|
|
||||||
Matrix result = createMatrix(rows1, cols1);
|
|
||||||
if (result.buffer == NULL) {
|
if (result.buffer == NULL) {
|
||||||
return (Matrix){0, 0, NULL};
|
return (Matrix){0, 0, NULL};
|
||||||
}
|
}
|
||||||
|
for (int i = 0; i < rows1; i++) {
|
||||||
Matrix copy2 = broadCastRows(matrix2, rows1, cols1);
|
for (int j = 0; j < cols1; j++) {
|
||||||
|
int valueM1 = getMatrixAt(matrix1, i, j);
|
||||||
// add und return
|
int valueM2 = getMatrixAt(newMatrix2, i, j);
|
||||||
|
int sum = valueM1 + valueM2;
|
||||||
for (int i = 0; i < (rows1 * cols1); i++) { // addieren
|
setMatrixAt(sum, result, i, j);
|
||||||
|
}
|
||||||
result.buffer[i] =
|
}
|
||||||
(matrix1.buffer[i] +
|
clearMatrix(&newMatrix2);
|
||||||
copy2.buffer[i]); // buffer[i] ⇔ *(buffer + i) Adresse =
|
return result;
|
||||||
// Startadresse + (i * sizeof(MatrixType))
|
}
|
||||||
|
} else {
|
||||||
|
// kein add möglich
|
||||||
|
Matrix errorMatrix = {0, 0, NULL};
|
||||||
|
return errorMatrix;
|
||||||
}
|
}
|
||||||
return result;
|
return result;
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
else {
|
|
||||||
|
|
||||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
|
||||||
// Programmabbruch
|
|
||||||
Matrix error = {0, 0, NULL};
|
|
||||||
return error;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
else {
|
|
||||||
printf("Fehlermeldung"); // vielleicht Fehlermeldung ändern zu
|
|
||||||
// Programmabbruch
|
|
||||||
Matrix error = {0, 0, NULL};
|
|
||||||
return error;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
|
||||||
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
|
||||||
if (matrix1.cols == matrix2.rows) {
|
if (matrix1.cols == matrix2.rows) {
|
||||||
|
|||||||
16
matrix.h
16
matrix.h
@ -13,17 +13,15 @@ typedef struct {
|
|||||||
|
|
||||||
} Matrix;
|
} Matrix;
|
||||||
|
|
||||||
Matrix createMatrix(unsigned int rows, unsigned int cols);
|
Matrix createMatrix(const unsigned int rows, const unsigned int cols);
|
||||||
void clearMatrix(Matrix *matrix);
|
void clearMatrix(Matrix *matrix);
|
||||||
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx,
|
void setMatrixAt(const MatrixType value, Matrix matrix,
|
||||||
unsigned int colIdx);
|
const unsigned int rowIdx, const unsigned int colIdx);
|
||||||
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx,
|
MatrixType getMatrixAt(const Matrix matrix, const unsigned int rowIdx,
|
||||||
unsigned int colIdx);
|
const unsigned int colIdx);
|
||||||
|
|
||||||
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
|
Matrix broadCastCols(const Matrix matrix, const unsigned int cols);
|
||||||
const unsigned int cols);
|
Matrix broadCastRows(const Matrix matrix, const unsigned int rows);
|
||||||
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
|
|
||||||
const unsigned int cols);
|
|
||||||
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
Matrix add(const Matrix matrix1, const Matrix matrix2);
|
||||||
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
|
||||||
|
|
||||||
|
|||||||
@ -28,68 +28,72 @@ Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
|
|||||||
|
|
||||||
Dimension: Form der Matrizen für einen Layer*/
|
Dimension: Form der Matrizen für einen Layer*/
|
||||||
|
|
||||||
// speichert NeuralNetwork nn in binäre Datei->erzeugt Dateiformat
|
/* Gewichtsmatrix der Layer:
|
||||||
|
*/
|
||||||
|
|
||||||
|
// speichert NeuralNetwork nn in binäre Datei->später kann es wieder geöffnet
|
||||||
|
// werden
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
|
||||||
FILE *f = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
|
||||||
if (f == NULL)
|
if (fptr == NULL)
|
||||||
return;
|
return; // file konnte nicht geöffnet werden
|
||||||
|
|
||||||
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
|
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
|
||||||
// Dateiformat
|
// Dateiformat
|
||||||
const char header[] = "__info2_neural_network_file_format__";
|
const char header[] = "__info2_neural_network_file_format__"; // header string
|
||||||
fwrite(header, sizeof(char), strlen(header), f);
|
fwrite(header, sizeof(char), strlen(header),
|
||||||
|
fptr); // der header wird am Anfang der Datei platziert
|
||||||
|
|
||||||
// Wenn es keine Layer gibt, 0 eintragen, LoadModel gibt 0 zurück
|
// Wenn es keine Layer gibt, 0 eintragen, LoadModel erkennt, dass Datei leer
|
||||||
|
// ist
|
||||||
if (nn.numberOfLayers == 0) {
|
if (nn.numberOfLayers == 0) {
|
||||||
int zero = 0;
|
int zero = 0;
|
||||||
fwrite(&zero, sizeof(int), 1, f);
|
fwrite(&zero, sizeof(int), 1, fptr);
|
||||||
fclose(f);
|
fclose(fptr);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
|
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
|
||||||
// Output-Neuronen
|
// Output-Neuronen wird in Datei eingefügt
|
||||||
int inputDim = (int)nn.layers[0].weights.cols;
|
int inputDim = (int)nn.layers[0].weights.cols;
|
||||||
int outputDim = (int)nn.layers[0].weights.rows;
|
int outputDim = (int)nn.layers[0].weights.rows;
|
||||||
fwrite(&inputDim, sizeof(int), 1, f);
|
fwrite(&inputDim, sizeof(int), 1, fptr);
|
||||||
fwrite(&outputDim, sizeof(int), 1, f);
|
fwrite(&outputDim, sizeof(int), 1, fptr);
|
||||||
|
|
||||||
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
|
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
|
||||||
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
|
||||||
geschrieben. */
|
geschrieben. */
|
||||||
for (int i = 0; i < nn.numberOfLayers; i++) {
|
for (int i = 0; i < nn.numberOfLayers; i++) {
|
||||||
Layer layer = nn.layers[i];
|
Layer layer = nn.layers[i]; // kürzer, durch alle layer iterieren
|
||||||
|
|
||||||
int wrows = (int)layer.weights.rows;
|
int wrows = (int)layer.weights.rows;
|
||||||
int wcols = (int)layer.weights.cols;
|
int wcols = (int)layer.weights.cols;
|
||||||
int wcount = wrows * wcols;
|
int wcount = wrows * wcols; // Anzahl Gewichtseinträge
|
||||||
int bcount =
|
int bcount =
|
||||||
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */
|
layer.biases.rows * layer.biases.cols; // Anzahl der Bias-Einträge
|
||||||
|
|
||||||
/* Gewichte (MatrixType binär) */
|
/* Gewichte */
|
||||||
if (wcount > 0 && layer.weights.buffer != NULL) {
|
if (wcount > 0 && layer.weights.buffer != NULL) {
|
||||||
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, f);
|
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
|
||||||
}
|
} // Gewichte werden als Matrix gespeichert
|
||||||
|
|
||||||
/* Biases (MatrixType binär) */
|
/* Biases */
|
||||||
if (bcount > 0 && layer.biases.buffer != NULL) {
|
if (bcount > 0 && layer.biases.buffer != NULL) {
|
||||||
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, f);
|
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
|
||||||
}
|
} // Biases werden als Vektor gespeichert
|
||||||
|
|
||||||
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */
|
/* outputDimensionen der nächsten Layer */
|
||||||
if (i + 1 < nn.numberOfLayers) {
|
if (i + 1 < nn.numberOfLayers) {
|
||||||
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
int nextOutput = (int)nn.layers[i + 1].weights.rows;
|
||||||
fwrite(&nextOutput, sizeof(int), 1, f);
|
fwrite(&nextOutput, sizeof(int), 1, fptr);
|
||||||
} else {
|
} else {
|
||||||
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0
|
// loadModel erkennt 0 als Ende der Datei
|
||||||
schreiben. loadModel liest dann outputDimension = 0 und beendet die
|
|
||||||
Schleife. */
|
|
||||||
int zero = 0;
|
int zero = 0;
|
||||||
fwrite(&zero, sizeof(int), 1, f);
|
fwrite(&zero, sizeof(int), 1, fptr);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fclose(f);
|
fclose(fptr); // Datei schließen
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
void test_loadModelReturnsCorrectNumberOfLayers(void) {
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user