generated from freudenreichan/info2Praktikum-DobleSpiel
fixed bintree.c to utilize stack.c
This commit is contained in:
parent
75d01e630a
commit
cd4f74f9a5
134
bintree.c
134
bintree.c
@ -2,72 +2,47 @@
|
||||
#include "stack.h"
|
||||
#include "bintree.h"
|
||||
|
||||
//TODO: binären Suchbaum implementieren
|
||||
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
||||
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
||||
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
||||
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
||||
|
||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
||||
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
||||
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
||||
{
|
||||
// Teil 1: Trivialfall (Einfügen des neuen Knotens)
|
||||
if(root == NULL)
|
||||
if (root == NULL)
|
||||
{
|
||||
// Speicher für den Knoten selbst reservieren
|
||||
TreeNode *newNode = (TreeNode*)malloc(sizeof(TreeNode));
|
||||
TreeNode *newNode = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
if (newNode == NULL)
|
||||
{
|
||||
return NULL; // Fehler beim Allokieren
|
||||
}
|
||||
return NULL;
|
||||
|
||||
// Speicher für die Datenkopie reservieren
|
||||
newNode->data = malloc(dataSize);
|
||||
if (newNode->data == NULL)
|
||||
{
|
||||
free(newNode);
|
||||
return NULL; // Fehler beim Allokieren
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Daten kopieren
|
||||
memcpy(newNode->data, data, dataSize);
|
||||
|
||||
// Initialisieren
|
||||
newNode->left = NULL;
|
||||
newNode->right = NULL;
|
||||
|
||||
// Flag setzen und Knoten zurückgeben
|
||||
if (isDuplicate != NULL) *isDuplicate = 0;
|
||||
return newNode;
|
||||
}
|
||||
|
||||
// Teil 2: Rekursiver Fall (Vergleich)
|
||||
int comparison = compareFct(data, root->data);
|
||||
|
||||
if (comparison == 0)
|
||||
{
|
||||
// Duplikat gefunden
|
||||
if (isDuplicate != NULL) *isDuplicate = 1;
|
||||
// Duplikate werden akzeptiert, wenn isDuplicate == NULL (siehe bintree.h)
|
||||
// Da wir aber in createNumbers Duplikate vermeiden wollen, geben wir hier einfach root zurück.
|
||||
|
||||
// Wenn Duplikate erlaubt sind, könntest du hier einen zweiten Knoten einfügen,
|
||||
// aber standardmäßig überspringen wir Duplikate, wenn isDuplicate gesetzt ist.
|
||||
return root;
|
||||
}
|
||||
else if (comparison < 0)
|
||||
{
|
||||
// Wert ist kleiner -> gehe nach links
|
||||
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
|
||||
}
|
||||
else // comparison > 0
|
||||
else
|
||||
{
|
||||
// Wert ist größer -> gehe nach rechts
|
||||
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
|
||||
}
|
||||
|
||||
// 3. Wenn die Rekursion zurückkehrt, wird der aktuelle root-Pointer zurückgegeben.
|
||||
return root;
|
||||
}
|
||||
|
||||
@ -76,81 +51,53 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
|
||||
// push the top node and push all its left nodes.
|
||||
void *nextTreeData(TreeNode *root)
|
||||
{
|
||||
/* static iterator state */
|
||||
static TreeNode **stack = NULL;
|
||||
static int top = -1;
|
||||
static int capacity = 0;
|
||||
/* static iterator state using stack.c */
|
||||
static StackNode *stack = NULL;
|
||||
static TreeNode *currentRoot = NULL;
|
||||
|
||||
/* helper: ensure capacity */
|
||||
if (capacity == 0) {
|
||||
capacity = 16;
|
||||
stack = (TreeNode**)malloc(capacity * sizeof(TreeNode*));
|
||||
if (stack == NULL) { capacity = 0; return NULL; }
|
||||
}
|
||||
|
||||
/* helper: push one node */
|
||||
#define PUSH_NODE(n) do { \
|
||||
if (top + 1 >= capacity) { \
|
||||
int newcap = capacity * 2; \
|
||||
TreeNode **tmp = (TreeNode**)realloc(stack, newcap * sizeof(TreeNode*)); \
|
||||
if (tmp == NULL) { /* allocation failed, keep old stack */ break; } \
|
||||
stack = tmp; capacity = newcap; \
|
||||
} \
|
||||
stack[++top] = (n); \
|
||||
} while(0)
|
||||
|
||||
/* helper: push node and all left descendants */
|
||||
void push_lefts(TreeNode *n) {
|
||||
while (n != NULL) {
|
||||
PUSH_NODE(n);
|
||||
void push_lefts(TreeNode *n)
|
||||
{
|
||||
while (n != NULL)
|
||||
{
|
||||
stack = push(stack, (void *)n);
|
||||
n = n->left;
|
||||
}
|
||||
}
|
||||
|
||||
/* If a new root is provided and differs from current, reset iterator */
|
||||
if (root != NULL && root != currentRoot) {
|
||||
free(stack);
|
||||
/* If a new root is provided and differs from current, or explicit restart with same root, reset iterator */
|
||||
if (root != NULL && root != currentRoot)
|
||||
{
|
||||
clearStack(stack);
|
||||
stack = NULL;
|
||||
top = -1;
|
||||
capacity = 0;
|
||||
currentRoot = root;
|
||||
|
||||
/* reinitialize stack */
|
||||
capacity = 16;
|
||||
stack = (TreeNode**)malloc(capacity * sizeof(TreeNode*));
|
||||
if (stack == NULL) { capacity = 0; return NULL; }
|
||||
top = -1;
|
||||
push_lefts(root);
|
||||
} else if (root != NULL && root == currentRoot) {
|
||||
/* explicit restart with same root: reset and push again */
|
||||
free(stack);
|
||||
}
|
||||
else if (root != NULL && root == currentRoot)
|
||||
{
|
||||
/* explicit restart with same root */
|
||||
clearStack(stack);
|
||||
stack = NULL;
|
||||
top = -1;
|
||||
capacity = 0;
|
||||
capacity = 16;
|
||||
stack = (TreeNode**)malloc(capacity * sizeof(TreeNode*));
|
||||
if (stack == NULL) { capacity = 0; return NULL; }
|
||||
top = -1;
|
||||
push_lefts(root);
|
||||
}
|
||||
/* if root == NULL: continue with existing stack */
|
||||
|
||||
/* nothing left */
|
||||
if (top < 0) {
|
||||
free(stack);
|
||||
stack = NULL;
|
||||
capacity = 0;
|
||||
if (stack == NULL)
|
||||
{
|
||||
currentRoot = NULL;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* pop top */
|
||||
TreeNode *node = stack[top--];
|
||||
TreeNode *node = (TreeNode *)top(stack);
|
||||
stack = pop(stack);
|
||||
|
||||
void *result = node->data;
|
||||
|
||||
/* if right child exists, push it and all its lefts */
|
||||
if (node->right != NULL) {
|
||||
if (node->right != NULL)
|
||||
{
|
||||
push_lefts(node->right);
|
||||
}
|
||||
|
||||
@ -160,38 +107,23 @@ void *nextTreeData(TreeNode *root)
|
||||
// Releases all memory resources (including data copies).
|
||||
void clearTree(TreeNode *root)
|
||||
{
|
||||
// 1. Basis-Fall: Wenn der Knoten NULL ist, beende
|
||||
if (root == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// 2. Rekursiver Schritt (gehe in die Tiefe)
|
||||
|
||||
// Gib den linken Teilbaum frei
|
||||
clearTree(root->left);
|
||||
|
||||
// Gib den rechten Teilbaum frei
|
||||
clearTree(root->right);
|
||||
|
||||
// 3. Aktion: Gebe die Ressourcen dieses Knotens frei
|
||||
|
||||
// Zuerst die dynamisch kopierten Daten freigeben (siehe addToTree)
|
||||
if (root->data != NULL)
|
||||
{
|
||||
free(root->data); // Speicher für die Zahl freigeben
|
||||
}
|
||||
free(root->data);
|
||||
|
||||
// Dann den Knoten selbst freigeben
|
||||
free(root);
|
||||
}
|
||||
|
||||
// Returns the number of entries in the tree given by root.
|
||||
unsigned int treeSize(const TreeNode *root)
|
||||
{
|
||||
if (root == NULL) { //0 for end
|
||||
return 0;
|
||||
}
|
||||
return 1u + treeSize(root->left) + treeSize(root->right); //using 1u to insure unsigned
|
||||
//recursively adds entries in the tree after root to left and right
|
||||
if (root == NULL)
|
||||
return 0u;
|
||||
|
||||
return 1u + treeSize(root->left) + treeSize(root->right);
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user