Compare commits

...

2 Commits

Author SHA1 Message Date
Tim
20d45ce4ca snake und bot 2025-02-11 14:10:09 +01:00
Tim
d0ae96def8 Crapy rumble bot 2025-02-11 14:07:15 +01:00
3 changed files with 309 additions and 0 deletions

88
src/Bot.java Normal file
View File

@ -0,0 +1,88 @@
package src;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.OutputStream;
import java.net.Socket;
import java.net.InetSocketAddress;
public abstract class Bot {
// Ein Bot ist ein Programm, das sich mit einem Server verbindet und
// mit diesem kommuniziert. Der Server sendet dem Bot eine Zeichenkette,
// die das Spielfeld repräsentiert. Der Bot sendet dem Server ein Zeichen,
// das die nächste Bewegung des Bots repräsentiert.
private final String host; // Hostname oder IP-Adresse des Servers
private final int port; // Port des Servers
protected Bot(String[] args) {
host = args.length > 0 ? args[0] : "localhost";
port = args.length > 1 ? Integer.parseInt(args[1]) : 63187;
}
// Diese Methode stellt die Verbindung zum Server her und startet die
// Kommunikation mit dem Server. Die Methode wird von der main-Methode
// aufgerufen.
protected void run() {
try (Socket socket = new Socket()) {
socket.connect(new InetSocketAddress(host, port));
OutputStream out = socket.getOutputStream();
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
View view = new View();
while (true) {
view.read(in);
view.print();
try {
char ch = nextMove(view);
out.write(ch);
} catch (Exception e) {
break;
}
}
socket.close();
} catch (IOException e) {
System.err.println("Error: " + e.getMessage());
}
}
// Diese Methode ermittelt den nächsten Zug des Bots. Sie wird von der
// run-Methode aufgerufen, nachdem der Server das Spielfeld gesendet hat.
// Subklassen müssen diese Methode implementieren.
abstract protected char nextMove(View view) throws Exception;
// Diese Klasse repräsentiert das Spielfeld. Sie wird von der run-Methode
// verwendet, um das Spielfeld zu lesen und auszugeben.
// Subklassen können diese Klasse verwenden, um das Spielfeld zu analysieren.
public static class View {
protected String data;
protected int width;
// Diese Methode liest das Spielfeld vom Server.
private void read(BufferedReader in) throws IOException {
StringBuilder sb = new StringBuilder();
data = in.readLine();
if (data == null) {
return;
}
sb.append(data);
width = data.length();
for (int i = 1; i < width; ++i) {
sb.append(in.readLine());
}
data = sb.toString();
}
// Diese Methode gibt das Spielfeld aus.
protected void print() {
if (data == null || width < 1) {
return;
}
for (int i = 0, len = data.length(); i < len; i += width) {
System.out.println(data.substring(i, i + width));
}
}
}
}

93
src/RumbleBot.java Normal file
View File

@ -0,0 +1,93 @@
package src;
public class RumbleBot extends Bot {
int stepCounter = 0;
int turnCount = 0;
int viewRange = 30;
int straightLength = 1;
protected RumbleBot(String[] args) {
super(args);
}
public static void main(String[] args) {
RumbleBot bot = new RumbleBot(args);
bot.run();
}
@Override
protected char nextMove(View view) throws Exception {
// Definition der gegnerischen Symbole
String enemySymbols = "<>v^";
// Annahme: Sichtfeld ist 9x9, der Bot steht immer in der Mitte (Zeile 4, Spalte 4)
final int gridSize = 9;
final int centerRow = gridSize / 2; // 4
final int centerCol = gridSize / 2; // 4
// 1. Prüfe, ob sich ein Gegner in der direkten Schusslinie befindet.
// Dabei werden die Zellen in der zentralen Spalte oberhalb des Bots untersucht (Reihen 0 bis 3).
for (int row = 0; row < centerRow; row++) {
int index = row * gridSize + centerCol;
char cell = view.data.charAt(index);
if (enemySymbols.indexOf(cell) != -1) {
// Ein Gegner befindet sich direkt vor dem Bot feuere!
return 'f';
}
}
// 2. Falls kein Gegner in der Schusslinie ist, prüfe, ob überhaupt ein Gegner sichtbar ist.
// Wenn keiner der gegnerischen Symbole im Sichtfeld vorkommt, folgt das Standard-Bewegungsmuster.
if (view.data.indexOf('<') == -1 &&
view.data.indexOf('>') == -1 &&
view.data.indexOf('^') == -1 &&
view.data.indexOf('v') == -1) {
// Kein Gegner im Sichtfeld bewege dich gemäß dem Bewegungsmuster:
if (turnCount == 2) {
turnCount = 0;
straightLength++;
}
if (stepCounter < straightLength * viewRange) {
stepCounter++;
return '^';
} else {
stepCounter = 0;
turnCount++;
return '>';
}
}
// 3. Es ist ein Gegner sichtbar, allerdings nicht direkt in der Schusslinie.
// Bestimme, ob der Gegner eher links oder rechts liegt, und drehe in die entsprechende Richtung,
// um den Gegner in Zukunft in die Schusslinie zu bekommen.
boolean enemyOnLeft = false;
boolean enemyOnRight = false;
// Untersuche dazu alle Zellen des Sichtfelds:
for (int row = 0; row < gridSize; row++) {
for (int col = 0; col < gridSize; col++) {
int index = row * gridSize + col;
char cell = view.data.charAt(index);
if (enemySymbols.indexOf(cell) != -1) {
// Vergleiche die Spalte der Zelle mit der Mitte (centerCol)
if (col < centerCol) {
enemyOnLeft = true;
} else if (col > centerCol) {
enemyOnRight = true;
}
}
}
}
if (enemyOnLeft) {
return '<';
} else if (enemyOnRight) {
return '>';
}
// Sollte zwar ein Gegner sichtbar sein, aber weder links noch rechts als Fallback fahre vorwärts.
return '^';
}
}

128
src/SnakeBot.java Normal file
View File

@ -0,0 +1,128 @@
package src;
public class SnakeBot extends Bot {
int straightLength = 1; //length of the straight the bot still needs to travel(in "FOV-Tiles")
int stepCounter = 0; //steps the bot has already taken on the straight
int turnCount = 2; //amount of times the bot needs to turn before increasing straightLength
final int VIEWRANGE = 5; //distance from one end to the bots FOV to the other (assumes square FOV)
int wagonCount = 0; //amount of wagons the rover is currently pulling
int angle = 0; //current angle of the rover, compared to its initial angle
boolean isOnPath = true; //if the bot is on its normal search path (not pathing to a mineral)
char[] clearSequence = {'<', '^', '<', '^', '^', '>', '^', '>', '^', '^', '^', '^', '>', '^', '>', '^', '<', '^', '^', '>',
'^', '^', '^', '<', '^', '<', '^', '^', '^', '^', '<', '^', '^', '>'};
char[] cornerClearSequence = {'<', '^', '<', '^', '^', '>', '^', '>', '^', '^', '^', '^', '>', '^', '>', '^', '<', '^',
'<', '^', '>', '^', '^', '>', '^', '>', '^', '<', '^', '^', '^', '<', '^', '<', '^', '^', '>'};
int clearSequenceCounter = 0;
boolean isClearing = false;
protected SnakeBot(String[] args) {
super(args);
}
public static void main(String[] args) {
SnakeBot bot = new SnakeBot(args);
bot.run();
}
@Override
protected char nextMove(View view) throws Exception {
// if (!view.data.contains("@") && isOnPath) {
//
// if (turnCount <= 0) {
// turnCount = 2;
// straightLength++;
// }
// if (stepCounter < straightLength * viewRange) {
// stepCounter++;
// return '^';
// } else {
// stepCounter = 0;
// turnCount--;
// angle = (angle + 90) % 360;
// return '>';
// }
// } else if (!view.data.contains("@") && !isOnPath) {
//
// } else {
// isOnPath = false;
// //check for minerals to the left of the rover (high prio)
// for (int i = 0; i < view.data.length(); i += viewRange) {
// if (view.data.substring(i, i + 2).contains("@")) {
// angle = (angle + 270) % 360;
// return '<';
// }
// }
// //check for minerals in front of the rover (mid prio)
// if (view.data.substring(0, view.data.length() / 2 - viewRange / 2).contains("@")) {
// return '^';
// }
// //check for minerals to the right of the rover (low prio)
// for (int i = 3; i < view.data.length(); i += viewRange) {
// if (view.data.substring(i, i + 2).contains("@")) {
// angle = (angle + 90) % 360;
// return '>';
// }
// }
// if (view.data.substring(0, 10).contains("@")) {
// return '^';
// } else if (view.data.substring(10, 12).contains("@")) {
// return '<';
// } else if (view.data.substring(13, 15).contains("@")) {
// return '>';
// } else if (view.data.substring(15, 25).contains("@")) {
// return 'v';
// }
// }
if (stepCounter % VIEWRANGE == 0 && !isClearing && view.data.contains("@")) {
isClearing = true;
}
if (isClearing) {
return clearFov(view);
} else {
if (turnCount <= 0) {
turnCount = 2;
straightLength++;
}
//if rover hasn't reached corner
if (stepCounter < straightLength * VIEWRANGE) {
stepCounter++;
return '^';
} else {
stepCounter = 0;
turnCount--;
return '>';
}
}
//return 0;
}
protected char clearFov(View view) {
char move;
//check if rover is at a corner of its search path
if (stepCounter >= straightLength * VIEWRANGE) {
move = cornerClearSequence[clearSequenceCounter++];
//update rover state and reset sequence after its done
if (clearSequenceCounter >= cornerClearSequence.length) {
isClearing = false;
stepCounter = 2;
turnCount--;
clearSequenceCounter = 0;
}
} else {
move = clearSequence[clearSequenceCounter++];
//update rover state and reset sequence after its done
if (clearSequenceCounter >= clearSequence.length) {
isClearing = false;
stepCounter += 2;
clearSequenceCounter = 0;
}
}
return move;
}
}