|
|
|
|
|
|
|
|
\includegraphics[width= 1.75\columnwidth, angle = 90]{SOK_TEG_FS.pdf} |
|
|
\includegraphics[width= 1.75\columnwidth, angle = 90]{SOK_TEG_FS.pdf} |
|
|
\subheading{Stationär} |
|
|
\subheading{Stationär} |
|
|
|
|
|
|
|
|
|
|
|
ESB von magnetisch gekoppelten Stromkreisen einfügen\\ |
|
|
|
|
|
Spannungsgleichungen der beiden Stromkreise |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\underline{U_1} = (R_1+jwL_{1\sigma})\cdot\underline{I_1}+jwL_{1h}\cdot\underline{I_\mu} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\underline{U_2'} = (R_2'+jwL'_{2\sigma})\cdot\underline{I_2'}+jwL_{2h}\cdot\underline{I_\mu} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
ESB zweier magnetisch gekoppelter Stromkreise fehlt noch |
|
|
|
|
|
|
|
|
|
|
|
\colorbox{yellow!60}{Streuziffer} |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\sigma_1 = \frac{L_{1\sigma}}{L_{1h}} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\colorbox{yellow!60}{Gesamtstreuung} |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\sigma = 1-\frac{1}{(1+\sigma_1)\cdot(1+\sigma_2)} = 1 - \frac{M^2}{L_1L_2} = 1-\frac{M^2}{M(1+sigma_1)+M(1+\sigma_2)} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Strangströme für Feldmaxima |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
b_u(t) = B \cdot cos(wt)= Re(b_u(t)\cdot e^{j\epsilon_0}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
b_v(t) = B \cdot cos(wt-\frac{2\pi}{3})= Re(b_v(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{2\pi}{3}}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
b_w(t) = B \cdot cos(wt-\frac{4\pi}{3})= Re(b_w(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{4\pi}{3}}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
b_res(t) = Re(e^{j\epsilon_0}(b_u(t)+b_v(t)\cdot \underbrace{e^{j\frac{2\pi}{3}}}_{a}+b_w(t)\cdot \underbrace{e^{j\frac{4\pi}{3}}}_{a^2}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Definition des Raumzeigers |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{B}= \frac{2}{3}(b_u(t)+\underline{a}\cdot b_v(t)+\underline{a^2}\cdot b_w(t)) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Raumzeiger von Strömen |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{I}= \frac{2}{3}(i_u(t)+\underline{a}\cdot i_v(t)+\underline{a^2}\cdot i_w(t)) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
bei symmetrischen Ströme |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
i_u(t) + i_v(t) + i_w(t) = 0 |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Stromraumzeiger |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{I}_1= \frac{2}{3}(i_u(t)+\underbrace{(-\frac{1}{2}+j\frac{\sqrt{3}}{2})}_{e^{j\frac{2\pi}{3}}}\cdot i_v(t)+\underbrace{(-\frac{1}{2}-j\frac{\sqrt{3}}{2})}_{e^{j\frac{4\pi}{3}}} \cdot i_w(t)) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Ersatzströme |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
I_{1\alpha} = Re(\vec{I}_1) = i_u(t) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
I_{1\beta} = Im(\vec{I}_1) = \frac{i_v(t)-i_w(t)}{\sqrt{3}} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Koordinatentransformation\\ |
|
|
|
|
|
ständerfeste Koordinaten: Index S |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{I}_1^S = \hat{I}_1\cdot e^{j\beta_S} = \vec{I}_1^L\cdot e^{j\beta_L} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
I_{1\alpha} = \hat{I}_1\cdot cos\beta_S |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
I_{1\beta} = \hat{I}_1\cdot sin\beta_S |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
läuferfeste Koordinaten: Index L |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{I}_1^L = \frac{\hat{I}_1 \cdot e^{j(\beta_S-\beta_L)}}{\vec{I}_1^S\cdot e^{-j\beta_L}} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Spannungsgleichung in Raumzeigerdarstellung\\ |
|
|
|
|
|
.... nachher geht es weiter |
|
|
|
|
|
|
|
|
\end{multicols*} |
|
|
\end{multicols*} |
|
|
|
|
|
|