Browse Source

Ergänzungen bis zu Spannungsgleichung in Raumzeigerdarstellung

master
Michaela Gremer 4 years ago
parent
commit
645f0cb1fc
2 changed files with 89 additions and 0 deletions
  1. BIN
      ENT4_FS.pdf
  2. 89
    0
      ENT4_FS.tex

BIN
ENT4_FS.pdf View File


+ 89
- 0
ENT4_FS.tex View File

\includegraphics[width= 1.75\columnwidth, angle = 90]{SOK_TEG_FS.pdf} \includegraphics[width= 1.75\columnwidth, angle = 90]{SOK_TEG_FS.pdf}
\subheading{Stationär} \subheading{Stationär}
ESB von magnetisch gekoppelten Stromkreisen einfügen\\
Spannungsgleichungen der beiden Stromkreise
\begin{equation}
\underline{U_1} = (R_1+jwL_{1\sigma})\cdot\underline{I_1}+jwL_{1h}\cdot\underline{I_\mu}
\end{equation}
\begin{equation}
\underline{U_2'} = (R_2'+jwL'_{2\sigma})\cdot\underline{I_2'}+jwL_{2h}\cdot\underline{I_\mu}
\end{equation}
ESB zweier magnetisch gekoppelter Stromkreise fehlt noch
\colorbox{yellow!60}{Streuziffer}
\begin{equation}
\sigma_1 = \frac{L_{1\sigma}}{L_{1h}}
\end{equation}
\colorbox{yellow!60}{Gesamtstreuung}
\begin{equation}
\sigma = 1-\frac{1}{(1+\sigma_1)\cdot(1+\sigma_2)} = 1 - \frac{M^2}{L_1L_2} = 1-\frac{M^2}{M(1+sigma_1)+M(1+\sigma_2)}
\end{equation}
Strangströme für Feldmaxima
\begin{equation}
b_u(t) = B \cdot cos(wt)= Re(b_u(t)\cdot e^{j\epsilon_0})
\end{equation}
\begin{equation}
b_v(t) = B \cdot cos(wt-\frac{2\pi}{3})= Re(b_v(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{2\pi}{3}})
\end{equation}
\begin{equation}
b_w(t) = B \cdot cos(wt-\frac{4\pi}{3})= Re(b_w(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{4\pi}{3}})
\end{equation}
\begin{equation}
b_res(t) = Re(e^{j\epsilon_0}(b_u(t)+b_v(t)\cdot \underbrace{e^{j\frac{2\pi}{3}}}_{a}+b_w(t)\cdot \underbrace{e^{j\frac{4\pi}{3}}}_{a^2})
\end{equation}
Definition des Raumzeigers
\begin{equation}
\vec{B}= \frac{2}{3}(b_u(t)+\underline{a}\cdot b_v(t)+\underline{a^2}\cdot b_w(t))
\end{equation}
Raumzeiger von Strömen
\begin{equation}
\vec{I}= \frac{2}{3}(i_u(t)+\underline{a}\cdot i_v(t)+\underline{a^2}\cdot i_w(t))
\end{equation}
bei symmetrischen Ströme
\begin{equation}
i_u(t) + i_v(t) + i_w(t) = 0
\end{equation}
Stromraumzeiger
\begin{equation}
\vec{I}_1= \frac{2}{3}(i_u(t)+\underbrace{(-\frac{1}{2}+j\frac{\sqrt{3}}{2})}_{e^{j\frac{2\pi}{3}}}\cdot i_v(t)+\underbrace{(-\frac{1}{2}-j\frac{\sqrt{3}}{2})}_{e^{j\frac{4\pi}{3}}} \cdot i_w(t))
\end{equation}
Ersatzströme
\begin{equation}
I_{1\alpha} = Re(\vec{I}_1) = i_u(t)
\end{equation}
\begin{equation}
I_{1\beta} = Im(\vec{I}_1) = \frac{i_v(t)-i_w(t)}{\sqrt{3}}
\end{equation}
Koordinatentransformation\\
ständerfeste Koordinaten: Index S
\begin{equation}
\vec{I}_1^S = \hat{I}_1\cdot e^{j\beta_S} = \vec{I}_1^L\cdot e^{j\beta_L}
\end{equation}
\begin{equation}
I_{1\alpha} = \hat{I}_1\cdot cos\beta_S
\end{equation}
\begin{equation}
I_{1\beta} = \hat{I}_1\cdot sin\beta_S
\end{equation}
läuferfeste Koordinaten: Index L
\begin{equation}
\vec{I}_1^L = \frac{\hat{I}_1 \cdot e^{j(\beta_S-\beta_L)}}{\vec{I}_1^S\cdot e^{-j\beta_L}}
\end{equation}
Spannungsgleichung in Raumzeigerdarstellung\\
.... nachher geht es weiter
\end{multicols*} \end{multicols*}



Loading…
Cancel
Save