370 lines
11 KiB
C++
Raw Normal View History

2021-06-25 18:35:16 +02:00
#include "treppe.h"
// #define DEBUG_TIMING
2021-06-23 21:23:31 +02:00
/*
- dimmer_tick: increment pwm jeden tick, bis anim beendet
- return: fsm_pend.anim_beendet
*/
bool Treppe::dimmer_tick(dimmer_t *dimmer, bool dim_type) {
dimmer->pwm += dimmer->delta_pwm;
Serial.printf("%.0f", dimmer->pwm);
if (dim_type == DIM_STUFEN) {
pwmController.setChannelPWM(dimmer->stufe,
static_cast<uint16_t>(dimmer->pwm));
} else { // DIM_LDR
pwmController.setAllChannelsPWM(static_cast<uint16_t>(dimmer->pwm));
}
2021-07-03 17:51:14 +02:00
dimmer->tick++;
if (dimmer->tick < dimmer->ticks) {
Serial.print("-");
return false;
}
Serial.println("");
if (dim_type == DIM_LDR) {
Serial.printf("DIM_LDR: start: %d, ziel: %d\n", dimmer->start_pwm,
dimmer->ziel_pwm);
return true;
} else // DIM_STUFEN
{
Serial.printf("DIM_STUFEN: stufe: %d, start: %d, ziel: %d\n",
dimmer->stufe, dimmer->start_pwm, dimmer->ziel_pwm);
if (fsm_outputs.laufrichtung == LR_HOCH) {
if (dimmer->stufe >= stufen - 1)
return true;
dimmer->stufe++;
} else // LR_RUNTER
2021-07-03 17:51:14 +02:00
{
if (dimmer->stufe <= 0)
return true;
dimmer->stufe--;
2021-07-03 17:51:14 +02:00
}
dimmer->tick = 0;
dimmer->pwm = dimmer->start_pwm;
}
return false;
2021-06-25 04:53:06 +02:00
}
// startbedingunen für animation
void Treppe::start_animation(dimmer_t *dimmer, bool dim_type, uint16_t on_pwm,
uint16_t off_pwm) {
fsm_pend.anim_beendet = false;
2021-07-03 17:51:14 +02:00
if (dim_type == DIM_STUFEN) {
if (fsm_outputs.laufrichtung == LR_HOCH)
dimmer->stufe = 0;
else
dimmer->stufe = stufen - 1;
2021-07-19 11:08:13 +02:00
dimmer->ticks = parameters.time_per_stair / INT_TIME; // [ms]
} else { // DIM_LDR
dimmer->ticks = parameters.time_ldr / INT_TIME; // [ms]
}
if (fsm_outputs.dimmrichtung == DR_AUFDIMMEN) {
dimmer->start_pwm = off_pwm;
dimmer->ziel_pwm = on_pwm;
dimmer->delta_pwm = (float)(on_pwm - off_pwm) / (float)dimmer->ticks;
} else {
dimmer->start_pwm = on_pwm;
dimmer->ziel_pwm = off_pwm;
dimmer->delta_pwm = (float)(off_pwm - on_pwm) / (float)dimmer->ticks;
}
dimmer->tick = 0;
dimmer->pwm = dimmer->start_pwm;
Serial.printf("stufe %d, ticks %d, delta %f, start %d, ziel %d\n",
dimmer->stufe, dimmer->ticks, dimmer->delta_pwm,
dimmer->start_pwm, dimmer->ziel_pwm);
2021-06-23 21:23:31 +02:00
}
2021-06-25 18:35:16 +02:00
void Treppe::print_state_on_change() {
static FSMTreppeModelClass::ExtU_FSMTreppe_T last_in;
static FSMTreppeModelClass::ExtY_FSMTreppe_T last_out;
if (fsm_inputs.anim_beendet != last_in.anim_beendet ||
fsm_inputs.sensor_oben != last_in.sensor_oben ||
fsm_inputs.sensor_unten != last_in.sensor_unten ||
fsm_inputs.ldr_schwelle != last_in.ldr_schwelle ||
fsm_outputs.dimmrichtung != last_out.dimmrichtung ||
fsm_outputs.laufrichtung != last_out.laufrichtung ||
fsm_outputs.status != last_out.status) {
last_in.anim_beendet = fsm_inputs.anim_beendet;
last_in.sensor_oben = fsm_inputs.sensor_oben;
last_in.sensor_unten = fsm_inputs.sensor_unten;
last_in.ldr_schwelle = fsm_inputs.ldr_schwelle;
last_out.dimmrichtung = fsm_outputs.dimmrichtung;
last_out.laufrichtung = fsm_outputs.laufrichtung;
last_out.status = fsm_outputs.status;
Serial.printf("FSM IN: s_u: %d, s_o: %d, a_b: %d, l_s: %d => ",
fsm_inputs.sensor_oben, fsm_inputs.sensor_unten,
fsm_inputs.anim_beendet, fsm_inputs.ldr_schwelle);
Serial.printf("OUT: LR: %d DR: %d ST: %d\n", fsm_outputs.laufrichtung,
fsm_outputs.dimmrichtung, fsm_outputs.status);
}
}
bool Treppe::read_sensor(int sensor) {
/*
2021-07-05 15:16:43 +02:00
reads sensors with edge detection
2021-07-05 15:16:43 +02:00
returns true if motion was detected
returns false if no motion was detected
returns false if motion was detected, but state did not change back to not
detected
2021-07-05 15:16:43 +02:00
*/
uint8_t pegel = digitalRead(sensor);
static uint8_t pegel_alt[2] = {0, 0};
uint8_t index = 0;
if (sensor == SENSOR_OBEN)
index = 0;
else
index = 1;
if (pegel == 1 && pegel_alt[index] == 0) {
pegel_alt[index] = pegel;
return true;
} else {
pegel_alt[index] = pegel;
return false;
}
// return static_cast<bool>(pegel);
}
float Treppe::read_ldr() {
/*
Reads Illuminance in Lux
FUTURE USE : show current Illuminance on Webserver in order to calibrate
Voltage Divider 1 (R13, R14):
R13 = 220k, R14 = 82k
V(ADC) = V(in1) * R14/(R13+R14)
-> V(in1) = V(ADC) * (R13+R14)/R14
V(ADC) = analogRead(A0)/1023.00
-> V(in1) = analogRead(A0)/1023.00 * (R13+R14)/R14
= analogRead(A0) * (R13+R14)/(R14*1023.00)
= analogRead(A0) * (220k+82k)/(82k*1023.00)
= analogRead(A0) * 0.0036
Voltage Divider 2 (LDR, R1 || (R13+R14))
R1 = 47k, R13+R14 = 302k -> R1||(R13+R14) = 40,67k
Vcc/V(in1) = R(LDR) / (R1||(R13+R14))
-> R(LDR) = Vcc/V(in1) * (R1||(R13+R14))
R(LDR) = 3.3V * 40.67k / V(in1)
Join formulas:
R(LDR) = 3.3V * 40.67k / (0.0036 * analogRead(A0))
= 37280.00/analogRead(A0)
ldr_ohm = R(LDR)
E(LDR) = 6526.5 * R(LDR)^-2 (see Excel Regression)
E(LDR) = 6526.5 / (R(LDR)^2)
ldr_value = E(LDR)
*/
float ldr_ohm = 37280.00 / analogRead(A0);
float ldr_value = 6526.6 / (ldr_ohm * ldr_ohm);
return ldr_value;
}
bool Treppe::check_ldr() {
2021-07-05 11:48:31 +02:00
static uint8_t active = 0;
2021-07-05 11:48:31 +02:00
#ifdef LDRDEBUG
Serial.printf("R(LDR) = %f kOhm %f lux\n", ldr_value, lux);
return true;
2021-07-05 11:48:31 +02:00
#endif
// follow up: averaging over many samples?
2021-07-05 11:48:31 +02:00
float ldr = read_ldr();
2021-07-19 11:08:13 +02:00
if (ldr < parameters.ldr_schwelle) {
active = 1;
}
2021-07-19 11:08:13 +02:00
if (ldr > parameters.ldr_schwelle + LDR_HYS) {
active = 0;
}
2021-07-05 11:48:31 +02:00
return active;
2021-06-23 21:23:31 +02:00
}
void Treppe::task() {
#ifdef DEBUG_TIMING
uint32_t m = micros();
#endif
// TODO wenn LDR geändert => idle_pwm_soll anpassen
// fsm_pend.ldr_changed = true;
fsm_inputs.ldr_schwelle = check_ldr();
#ifdef DEBUG_TIMING
Serial.print("1:");
Serial.println(micros() - m);
m = micros();
#endif
fsm_inputs.sensor_oben = read_sensor(SENSOR_OBEN);
fsm_inputs.sensor_unten = read_sensor(SENSOR_UNTEN);
fsm_inputs.anim_beendet = fsm_pend.anim_beendet;
#ifdef DEBUG_TIMING
Serial.print("2:");
Serial.println(micros() - m);
m = micros();
#endif
FSMTreppe_Obj.setExternalInputs(&fsm_inputs);
FSMTreppe_Obj.step();
fsm_outputs = FSMTreppe_Obj.getExternalOutputs();
#ifdef DEBUG_TIMING
Serial.print("3:");
Serial.println(micros() - m);
m = micros();
#endif
print_state_on_change();
#ifdef DEBUG_TIMING
Serial.print("4:");
Serial.println(micros() - m);
m = micros();
#endif
if (fsm_outputs.status == ST_AUFDIMMEN_HOCH ||
fsm_outputs.status == ST_ABDIMMEN_HOCH ||
fsm_outputs.status == ST_AUFDIMMEN_RUNTER ||
fsm_outputs.status == ST_ABDIMMEN_RUNTER) {
if (fsm_pend.anim_beendet)
start_animation(&dimmer_stufen, DIM_STUFEN, parameters.active_pwm,
idle_pwm_ist);
else
fsm_pend.anim_beendet = dimmer_tick(&dimmer_stufen, DIM_STUFEN);
} else if (fsm_outputs.status == ST_AUFDIMMEN_LDR ||
fsm_outputs.status == ST_ABDIMMEN_LDR) {
if (fsm_pend.anim_beendet)
start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_ist, 0);
else
fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR);
} else if (fsm_outputs.status == ST_RUHEZUSTAND) {
if (fsm_pend.ldr_changed) {
fsm_pend.ldr_changed = false;
fsm_outputs.dimmrichtung = DR_AUFDIMMEN;
start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_soll, idle_pwm_ist);
idle_pwm_ist = idle_pwm_soll;
}
if (!fsm_pend.anim_beendet) {
fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR);
}
}
#ifdef DEBUG_TIMING
Serial.print("5:");
Serial.println(micros() - m);
#endif
2021-07-03 17:51:14 +02:00
}
void Treppe::setup() {
pwmController.resetDevices();
// Deactive PCA9685 Phase Balancer due to LED Flickering
// https://github.com/NachtRaveVL/PCA9685-Arduino/issues/15
// see also lib/PCA9685-Arduin/PCA9685.h:204
pwmController.init(PCA9685_PhaseBalancer_None);
// pwmController.init(PCA9685_PhaseBalancer_Linear);
pwmController.setPWMFrequency(100);
// pwmController.setAllChannelsPWM(idle_pwm);
2021-07-19 11:57:12 +02:00
// WARNING: before getting Parameters of Flash, make sure plausible parameters
// are written in flash!
EEPROM.get(EEP_START_ADDR, parameters); // get Parameters of flash
2021-07-16 21:40:51 +02:00
pinMode(13, OUTPUT);
pinMode(0, OUTPUT);
digitalWrite(13, HIGH);
digitalWrite(0, HIGH);
pinMode(A0, INPUT);
pinMode(SENSOR_OBEN, INPUT);
pinMode(SENSOR_UNTEN, INPUT);
pinMode(OE, OUTPUT);
digitalWrite(OE, 0);
Serial.printf("Treppe: stufen=%d\n", stufen);
2021-06-23 21:23:31 +02:00
}
2021-07-19 11:57:12 +02:00
void Treppe::saveParam() {
EEPROM.put(EEP_START_ADDR,
parameters); // copy Parameters so "EEPROM"-section in RAM
EEPROM.commit(); // write "EEPROM"-section to flash
2021-07-19 11:31:32 +02:00
}
void Treppe::set_idle_pwm_max(const uint16_t value,
const vorgabe_typ_t vorgabe_typ) {
if (vorgabe_typ == VORGABE_PROZENT) {
parameters.idle_pwm_max = parameters.active_pwm * value / 100;
} else if (vorgabe_typ == VORGABE_12BIT) {
parameters.idle_pwm_max = value;
}
if (parameters.idle_pwm_max > parameters.active_pwm) {
parameters.idle_pwm_max = parameters.active_pwm;
}
saveParam();
Serial.printf("Treppe: parameters.idle_pwm_max=%d\n",
parameters.idle_pwm_max);
}
void Treppe::set_active_pwm(const uint16_t value,
const vorgabe_typ_t vorgabe_typ) {
if (vorgabe_typ == VORGABE_PROZENT) {
parameters.active_pwm = 4095 * value / 100;
} else if (vorgabe_typ == VORGABE_12BIT) {
parameters.active_pwm = value;
}
if (parameters.active_pwm > 4095) {
parameters.idle_pwm_max = 4095;
}
2021-07-19 11:31:32 +02:00
saveParam();
Serial.printf("Treppe: parameters.active_pwm=%d\n", parameters.active_pwm);
2021-06-23 21:23:31 +02:00
}
void Treppe::set_time_ldr(const uint16_t value) {
parameters.time_ldr = value;
if (parameters.time_ldr > TIME_MS_MAX)
parameters.time_ldr = TIME_MS_MAX;
2021-07-19 11:57:12 +02:00
saveParam();
Serial.printf("Treppe: time_ldr=%d\n", parameters.time_ldr);
}
void Treppe::set_time_per_stair(const uint16_t value) {
parameters.time_per_stair = value;
if (parameters.time_per_stair > TIME_MS_MAX)
parameters.time_per_stair = TIME_MS_MAX;
2021-07-19 11:57:12 +02:00
saveParam();
2021-07-19 11:08:13 +02:00
Serial.printf("Treppe: time_per_stair=%d\n", parameters.time_per_stair);
}
void Treppe::set_ldr_schwelle(const uint16_t value,
const vorgabe_typ_t vorgabe_typ) {
if (vorgabe_typ == VORGABE_PROZENT) {
// ?!
parameters.ldr_schwelle = 10 * value / 100;
} else if (vorgabe_typ == VORGABE_12BIT) {
// parameters.ldr_schwelle = value;
}
2021-07-19 11:31:32 +02:00
saveParam();
Serial.printf("Treppe: ldr_schwelle=%d\n", parameters.ldr_schwelle);
2021-06-25 19:23:02 +02:00
}