forked from hofmannol/AlgoDatSoSe25
Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
7db8e8c863 | |||
0c8afa7caf |
@ -1,32 +0,0 @@
|
||||
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
|
||||
from utils.project_dir import get_path
|
||||
import re
|
||||
|
||||
def read_elektro_into_graph(graph: Graph, filename: str):
|
||||
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
|
||||
with (open(filename, "r") as file):
|
||||
for line in file:
|
||||
m = pattern.match(line)
|
||||
if m:
|
||||
start_name = m.group(1)
|
||||
end_name = m.group(2)
|
||||
cost = int(m.group(3))
|
||||
graph.insert_vertex(start_name)
|
||||
graph.insert_vertex(end_name)
|
||||
graph.connect(start_name, end_name, cost)
|
||||
graph.connect(end_name, start_name, cost)
|
||||
|
||||
if __name__ == "__main__":
|
||||
graph = AdjacencyMatrixGraph()
|
||||
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
|
||||
|
||||
parents, cost = graph.mst_prim()
|
||||
print(f"Kosten nach Prim: {cost}")
|
||||
for node, parent in parents.items():
|
||||
if parent is not None:
|
||||
print(f"{node} - {parent}")
|
||||
|
||||
edges, cost = graph.mst_kruskal()
|
||||
print(f"Kosten nach Kruskal: {cost}")
|
||||
for start_name, end_name, _ in edges:
|
||||
print(f"{start_name} - {end_name}")
|
243
schoeffelbe/pr10.py
Normal file
243
schoeffelbe/pr10.py
Normal file
@ -0,0 +1,243 @@
|
||||
import logging
|
||||
from graphviz import Digraph
|
||||
from collections import deque
|
||||
import heapq
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# logging.basicConfig(level=logging.DEBUG)
|
||||
|
||||
import time
|
||||
|
||||
def timeMS(func, *args, **kwargs):
|
||||
startTime = time.perf_counter()
|
||||
result = func(*args, **kwargs)
|
||||
endTime = time.perf_counter()
|
||||
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
|
||||
print(f"{func.__name__} took {elapsedMS:.2f} ms")
|
||||
return result
|
||||
|
||||
class Graph:
|
||||
def __init__(self):
|
||||
self.adjacencyList = {}
|
||||
|
||||
def addEdge(self, node1, node2, bidirectional=True):
|
||||
if node1 not in self.adjacencyList:
|
||||
self.adjacencyList[node1] = []
|
||||
if node2 not in self.adjacencyList:
|
||||
self.adjacencyList[node2] = []
|
||||
self.adjacencyList[node1].append(node2)
|
||||
if bidirectional:
|
||||
self.adjacencyList[node2].append(node1)
|
||||
|
||||
def serialize(self):
|
||||
return self.adjacencyList
|
||||
|
||||
def breadthFirstSearch(self, start, goal, edgesGonePassed = None):
|
||||
if start not in self.adjacencyList or goal not in self.adjacencyList:
|
||||
return None, None
|
||||
|
||||
# Dont want to have a class for this, set suffices
|
||||
visited = set()
|
||||
queue = deque([(start, [start], set())]) # (current_node, path, edgesGoneToGetHere)
|
||||
|
||||
while queue:
|
||||
currentNode, path, edgesGone = queue.popleft()
|
||||
|
||||
if currentNode == goal:
|
||||
return path, edgesGone
|
||||
|
||||
if currentNode not in visited:
|
||||
logger.info(f"visiting {currentNode}")
|
||||
visited.add(currentNode)
|
||||
for neighbor in self.adjacencyList[currentNode]:
|
||||
edge = (currentNode, neighbor)
|
||||
# We already went this Edge. Read Part3 as not allowing this to happen
|
||||
edgeReverse = (neighbor, currentNode)
|
||||
if neighbor not in visited and (edgesGonePassed is None or edge not in edgesGonePassed) and (edgesGonePassed is None or edgeReverse not in edgesGonePassed):
|
||||
# Pythonic way of saying neighbour, path no next clear neighbour
|
||||
# and union of edgesGone with current edge
|
||||
queue.append((neighbor, path + [neighbor], edgesGone | {edge}))
|
||||
|
||||
return None, None
|
||||
|
||||
class SpanningTreeGraph(Graph):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# Store as {(node1,node2): weight} for fast and clean lookup
|
||||
self.edges = {}
|
||||
|
||||
def addWeightedEdge(self, node1, node2, weight, bidirectional=True):
|
||||
super().addEdge(node1, node2, bidirectional)
|
||||
self.edges[(node1, node2)] = weight;
|
||||
if bidirectional:
|
||||
self.edges[(node2, node1)] = weight;
|
||||
|
||||
def prim(self, startNode):
|
||||
if startNode not in self.adjacencyList:
|
||||
return None
|
||||
|
||||
visited = set()
|
||||
# PQ -> heapq uses pylist
|
||||
# Also, why do we need to init distance and parents to inf and None
|
||||
# Isnt this information stored in the Graph and/or the PQ already?
|
||||
pqMinHeap = []
|
||||
minSpanTree = []
|
||||
|
||||
visited.add(startNode)
|
||||
# Interanly use the weights compare and just take the minWeight -> No need for "inf"
|
||||
# Also store from->to for graph-building
|
||||
for neighbour in self.adjacencyList[startNode]:
|
||||
if (tmp := (startNode, neighbour)) in self.edges:
|
||||
neighbourWeight = self.edges[tmp]
|
||||
heapq.heappush(pqMinHeap, (neighbourWeight, startNode, neighbour));
|
||||
|
||||
while pqMinHeap:
|
||||
weight, nodeFrom, nodeTo = heapq.heappop(pqMinHeap)
|
||||
|
||||
if nodeTo not in visited:
|
||||
minSpanTree.append((nodeFrom, nodeTo, weight))
|
||||
visited.add(nodeTo)
|
||||
|
||||
for neighbour in self.adjacencyList[nodeTo]:
|
||||
if neighbour not in visited and (tmp := (nodeTo, neighbour)) in self.edges:
|
||||
edgeWeight = self.edges[tmp]
|
||||
heapq.heappush(pqMinHeap, (edgeWeight, nodeTo, neighbour))
|
||||
|
||||
return minSpanTree
|
||||
|
||||
# https://stackoverflow.com/questions/39713798/need-some-clarification-on-kruskals-and-union-find
|
||||
# Use UnionByRank and Path-Compression instead of regular union-find for faster runtime and less performance impact
|
||||
def kruskal(self):
|
||||
sortedEdges = sorted(self.edges.items(), key=lambda item: item[1])
|
||||
|
||||
minSpanTree = []
|
||||
|
||||
# UnionByRank+PathCompression assumes each Node has itsself as a parent in the beginning and Rank 0, union then sets new parent as per usual
|
||||
# Rank tries to pin together subtrees of the same rank to keep tree "clean"
|
||||
# Then during find (loopdetection) bubble up tree during find (as usual), but pathcompression collapses the "parent" to the root for next loop
|
||||
parent = {}
|
||||
rank = {}
|
||||
|
||||
# Init only once -> Set for filter
|
||||
for node in set(node for edge in self.edges.keys() for node in edge):
|
||||
parent[node] = node
|
||||
rank[node] = 0
|
||||
|
||||
def _find(node):
|
||||
# Path compression
|
||||
if parent[node] != node:
|
||||
parent[node] = _find(parent[node])
|
||||
return parent[node]
|
||||
|
||||
def _union(node1, node2):
|
||||
# Union by rank
|
||||
root1 = _find(node1)
|
||||
root2 = _find(node2)
|
||||
|
||||
if root1 != root2:
|
||||
if rank[root1] > rank[root2]:
|
||||
parent[root2] = root1
|
||||
elif rank[root1] < rank[root2]:
|
||||
parent[root1] = root2
|
||||
else:
|
||||
parent[root2] = root1
|
||||
rank[root1] += 1
|
||||
|
||||
for (node1, node2), weight in sortedEdges:
|
||||
# no Loop
|
||||
if _find(node1) != _find(node2):
|
||||
minSpanTree.append((node1, node2, weight))
|
||||
_union(node1, node2)
|
||||
|
||||
return minSpanTree;
|
||||
|
||||
|
||||
|
||||
def graphvizify(filePath: str, outputFile: str = 'build/hoehleGraph', edges=None):
|
||||
import re
|
||||
graph = Digraph()
|
||||
graph.attr(rankdir='TB')
|
||||
graph.attr('node', shape='circle', style='filled', fillcolor='lightgray')
|
||||
graph.attr('edge', arrowsize='0.5')
|
||||
|
||||
# Reuse the function to also create our Graph... Waste not want not^^
|
||||
caveGraph = SpanningTreeGraph();
|
||||
|
||||
# Provided Edges -> No Fileparsing, but display the MST
|
||||
if edges:
|
||||
# No dupl
|
||||
addedEdges = set()
|
||||
for (node1, node2), weight in edges.items():
|
||||
edge = tuple(sorted((node1, node2))) # Sort nodes for uniqueness (A,B == B,A)
|
||||
logger.debug(f"added {edge}")
|
||||
if edge not in addedEdges:
|
||||
graph.edge(f"\"{node1}\"", f"\"{node2}\"", label=(" " + str(weight)), dir='none')
|
||||
addedEdges.add(edge)
|
||||
else:
|
||||
with open(filePath, 'r') as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
# Cap "<STRING>";"<STRING>";<NUMBER> No whitespaces for sanity
|
||||
match = re.match(r'"([^"]+)"\s*;\s*"([^"]+)"\s*;\s*(\d+)', line)
|
||||
if match:
|
||||
node1, node2, weight = match.groups()
|
||||
weight = int(weight)
|
||||
graph.edge(f"\"{node1}\"", f"\"{node2}\"", label=(" "+(str(weight))), dir='none')
|
||||
logger.debug(f"Added {node1} -> {node2}")
|
||||
caveGraph.addWeightedEdge(node1, node2, weight)
|
||||
|
||||
try:
|
||||
graph.render(outputFile, view=True)
|
||||
except Exception as e:
|
||||
print(f"Could not display graph: {e}\n Trying to save without viewing!")
|
||||
try:
|
||||
graph.render(outputFile, view=False)
|
||||
print(f"Your built map should be available here: {outputFile}.pdf")
|
||||
except Exception as e:
|
||||
print(f"Could not save graph file: {e}")
|
||||
|
||||
return caveGraph
|
||||
|
||||
if __name__ == "__main__":
|
||||
start = "Höhleneingang"
|
||||
goal = "Schatzkammer"
|
||||
|
||||
for filename in [ "data/elektro.txt" ]:
|
||||
caveGraph = graphvizify(filename, 'build/hoehleGraphElektro')
|
||||
mst = caveGraph.prim(start);
|
||||
mstEdges = {(node1, node2): weight for node1, node2, weight in mst} # type: ignore -> "Pywright, Stop complaining. I know it can happen that we return none, but thats ok
|
||||
logger.debug(f"Prim: {mstEdges}")
|
||||
# Reuse the graphvizify to visualize the new MST
|
||||
graphvizify(filename, 'build/prim', mstEdges)
|
||||
|
||||
mstKruskal = caveGraph.kruskal();
|
||||
mstEdgesKruskal = {(node1, node2): weight for node1, node2, weight in mstKruskal} # type: ignore -> "Pywright, Stop complaining. I know it can happen that we return none, but thats ok
|
||||
logger.debug(f"Kruskal: {mstEdgesKruskal}")
|
||||
graphvizify(filename, 'build/kruskal', mstEdgesKruskal)
|
||||
|
||||
timeMS(caveGraph.prim, start)
|
||||
timeMS(caveGraph.kruskal)
|
||||
|
||||
print(f"MinPrim: {sum(mstEdges.values())} <+#+> MinKruskal: {sum(mstEdgesKruskal.values())}")
|
||||
|
||||
exit(0);
|
||||
|
||||
## Old Search for shortest Path, no MST
|
||||
shortestPath, edgesGoneInitial = caveGraph.breadthFirstSearch(start, goal)
|
||||
print(shortestPath, edgesGoneInitial)
|
||||
logger.debug(caveGraph.adjacencyList)
|
||||
logger.debug(edgesGoneInitial)
|
||||
|
||||
if shortestPath:
|
||||
print(f"Shortest path from {start} to {goal} is:")
|
||||
print(" -> ".join(shortestPath))
|
||||
else:
|
||||
print(f"No path found from {start} to {goal}.")
|
||||
|
||||
returnpath, _ = caveGraph.breadthFirstSearch(goal, start, edgesGoneInitial)
|
||||
|
||||
if returnpath:
|
||||
print(f"Shortest path from {goal} to {start} is:")
|
||||
print(" -> ".join(returnpath))
|
||||
else:
|
||||
print("No path back Home found. Good Luck")
|
@ -2,12 +2,9 @@ from collections import deque
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import graphviz
|
||||
import math
|
||||
import heapq
|
||||
from datetime import datetime
|
||||
from utils.project_dir import get_path
|
||||
from utils.priority_queue import PriorityQueue
|
||||
from vorlesung.L09_mst.disjoint import DisjointValue
|
||||
|
||||
|
||||
class NodeColor(Enum):
|
||||
@ -208,68 +205,6 @@ class Graph:
|
||||
relax(vertex, dest, weight)
|
||||
return distance_map, predecessor_map
|
||||
|
||||
def mst_prim(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
|
||||
|
||||
distance_map = {} # maps vertices to their current distance from the spanning tree
|
||||
parent_map = {} # maps vertices to their predecessor in the spanning tree
|
||||
|
||||
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
|
||||
|
||||
queue = []
|
||||
|
||||
if start_name is None:
|
||||
start_name = self.all_vertices()[0].value
|
||||
|
||||
# Initialize the maps
|
||||
for vertex in self.all_vertices():
|
||||
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
|
||||
parent_map[vertex] = None
|
||||
queue.append(vertex)
|
||||
|
||||
heapq.heapify(queue) # Convert the list into a heap
|
||||
|
||||
# Process the queue
|
||||
cost = 0 # The cost of the minimum spanning tree
|
||||
while len(queue) > 0:
|
||||
vertex = heapq.heappop(queue)
|
||||
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
|
||||
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
|
||||
if dest in queue and distance_map[dest] > w:
|
||||
# Update the distance and parent maps
|
||||
queue.remove(dest)
|
||||
distance_map[dest] = w
|
||||
parent_map[dest] = vertex
|
||||
queue.append(dest) # Add the vertex back to the queue
|
||||
heapq.heapify(queue) # Re-heapify the queue
|
||||
|
||||
# Return the distance and predecessor maps
|
||||
return parent_map, cost
|
||||
|
||||
def mst_kruskal(self, start_name: str = None):
|
||||
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
|
||||
|
||||
cost = 0
|
||||
result = []
|
||||
edges = self.all_edges()
|
||||
|
||||
# Create a disjoint set for each vertex
|
||||
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
|
||||
|
||||
# Sort the edges by weight
|
||||
edges.sort(key=lambda edge: edge[2])
|
||||
|
||||
# Process the edges
|
||||
for edge in edges:
|
||||
start_name, end_name, weight = edge
|
||||
# Check if the edge creates a cycle
|
||||
if not vertex_map[start_name].same_set(vertex_map[end_name]):
|
||||
result.append(edge)
|
||||
vertex_map[start_name].union(vertex_map[end_name])
|
||||
cost += weight
|
||||
|
||||
return result, cost
|
||||
|
||||
|
||||
class AdjacencyListGraph(Graph):
|
||||
"""A graph implemented as an adjacency list."""
|
||||
@ -308,6 +243,8 @@ class AdjacencyListGraph(Graph):
|
||||
return result
|
||||
|
||||
|
||||
|
||||
|
||||
class AdjacencyMatrixGraph(Graph):
|
||||
"""A graph implemented as an adjacency matrix."""
|
||||
def __init__(self):
|
||||
|
@ -1,18 +0,0 @@
|
||||
|
||||
|
||||
class DisjointValue():
|
||||
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
self.parent = None
|
||||
|
||||
def canonical(self):
|
||||
if self.parent:
|
||||
return self.parent.canonical()
|
||||
return self
|
||||
|
||||
def same_set(self, other):
|
||||
return self.canonical() == other.canonical()
|
||||
|
||||
def union(self, other):
|
||||
self.canonical().parent = other.canonical()
|
Loading…
x
Reference in New Issue
Block a user