Browse Source

- 'removed' files added to project

prepareMaster
Oliver Kleinecke 1 year ago
parent
commit
4a1c554a09

+ 108
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/Accelerometer.java View File

@@ -0,0 +1,108 @@
package com.example.ueberwachungssystem.Detection;

import static java.lang.Math.sqrt;

import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;


/**
* Accelerometer inherits some methods from abstract Detector class (more info there)
*
*
* USE FROM MAIN ACTIVITY:
*
* Accelerometer beschleunigungssensor = new Accelerometer(this);
* onCreate:
* //Accelerometer Setup
* beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary
* beschleunigungssensor.getSensor();
*
* //Starting Detection:
* beschleunigungssensor.startDetection();
* //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption
* beschleunigungssensor.stopDetection();
*
* */

public class Accelerometer extends Detector implements SensorEventListener {

public SensorManager sensorManager;
private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION;
private Sensor accelerometer;
private Context context;
boolean alarm = false;
//Preallocate memory for the data of each axis of the acceleration sensor
float x;
float y;
float z;
float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z)
private DetectionReport detectionReport;

// In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class
public Accelerometer(Context context){
super(); //von Detektor
this.context = context;
}

public void getSensor(){
sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE);
if(sensorManager.getSensorList(sensorType).size()==0) {
accelerometer = null;
}
else {
accelerometer = sensorManager.getSensorList(sensorType).get(0);
}
}

@Override
public void onSensorChanged(SensorEvent event) {
try {
checkAlarm(event);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}

public void checkAlarm (SensorEvent event) throws InterruptedException {
x = event.values[0];
y = event.values[1];
z = event.values[2];
betrag = (float) sqrt(x*x + y*y + z*z);
float threshold = 1.5F;

if (!alarm) {
if (betrag > threshold) {
alarm = true;
reportViolation("Bewegung", betrag);
}
} else {
if (betrag < threshold) {
alarm = false;
} else {
}
}
}

@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
}

@Override
public void startDetection() {
// entspricht void start()
//getSensor();
if (accelerometer != null) {
sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME);
}
}

@Override
public void stopDetection() {
// entspricht void stop()
sensorManager.unregisterListener(this, accelerometer);
}
}

+ 74
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/AudioRecorder.java View File

@@ -0,0 +1,74 @@
package com.example.ueberwachungssystem.Detection;

import android.content.Context;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.widget.Toast;

import java.io.File;
import java.io.IOException;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

public class AudioRecorder {
private final Context context;
private MediaRecorder mediaRecorder = null;
private boolean isRecording = false;
private File outputDir; // Default: in app files directory


public AudioRecorder (Context context) {
this.context = context;
this.outputDir = context.getFilesDir();
}

public void startRecording() {
// Handle logic
if (outputDir == null)
return;
if (isRecording)
return;
isRecording = true;

// Setup Audio Recorder for output Format: 3GP
mediaRecorder = new MediaRecorder();
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
mediaRecorder.setOutputFile(outputDir + "/" + generateFileName() + ".3gp");
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
try {
mediaRecorder.prepare();
} catch (IOException e) {
e.printStackTrace();
}
mediaRecorder.start();
}

public void stopRecording() {
if (mediaRecorder != null) {
mediaRecorder.stop();
mediaRecorder.reset();
mediaRecorder.release();
mediaRecorder = null;
isRecording = false;
Toast.makeText(context, "audio recording saved", Toast.LENGTH_SHORT).show();
}
}

public boolean isRecording(){
return isRecording;
}

public void setOutputDir(File outputDir) {
this.outputDir = outputDir;
}

private String generateFileName(){
// Get the current timestamp
LocalDateTime currentTime = LocalDateTime.now();
// Define the format for the timestamp
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd_HHmmss");
// Return the timestamp as a string
return currentTime.format(formatter);
}
}

+ 76
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/Detector.java View File

@@ -0,0 +1,76 @@
package com.example.ueberwachungssystem.Detection;

import android.os.CountDownTimer;

import androidx.annotation.NonNull;
import androidx.camera.core.ExperimentalGetImage;


abstract public class Detector {
private OnDetectionListener listener;
private boolean isDetecting = false;
private boolean extendViolation = false;

// Countdown parameters
private final int COUNTDOWN_TIME = 10000; // milliseconds
private final int COUNTDOWN_POLLING_TIME = 100; // milliseconds

/** Constructor - takes context of current activity */
public Detector() {}


/** On Detection Listener - runs when violation is reported */
public interface OnDetectionListener {
void onDetection(@NonNull DetectionReport detectionReport);
}
public void setOnDetectionListener(@NonNull OnDetectionListener listener) {
this.listener = listener;
}

/** Triggers onDetectionListener - call this to trigger violation/alarm */
public void reportViolation(String detectionType, float amplitude) {
if (listener != null) {
if (!isDetecting) {
isDetecting = true;
DetectionReport detectionReport = new DetectionReport(true, detectionType, amplitude);
listener.onDetection(detectionReport);
startDetectionTimer(detectionType, amplitude);
} else {
extendViolation = true;
}
} else {
isDetecting = false;
extendViolation = false;
}
}

private void startDetectionTimer(String detectionType, float amplitude) {
isDetecting = true;
new CountDownTimer((long) COUNTDOWN_TIME, COUNTDOWN_POLLING_TIME) {
@Override
public void onTick(long millisUntilFinished) {
if (extendViolation) {
extendViolation = false;
startDetectionTimer(detectionType, amplitude);
this.cancel();
}
}
@Override
public void onFinish() {
isDetecting = false;
DetectionReport detectionReport = new DetectionReport(false, detectionType, amplitude);
listener.onDetection(detectionReport);
}
}.start();
}

public void extendViolation(){
this.extendViolation = true;
}

/** Starts Detection (abstract method: needs to be overridden in child class) */
public abstract void startDetection();

/** Stops Detection (abstract method: needs to be overridden in child class) */
public abstract void stopDetection();
}

+ 109
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/OpenCVHelper.java View File

@@ -0,0 +1,109 @@
package com.example.ueberwachungssystem.Detection;

import android.graphics.Bitmap;
import android.media.Image;
import android.widget.ImageView;

import androidx.annotation.NonNull;
import androidx.camera.core.ExperimentalGetImage;
import androidx.camera.core.ImageProxy;

import org.opencv.android.Utils;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;


@ExperimentalGetImage
public class OpenCVHelper {

/** OpenCV helper methods **/
public static Mat addGaussianBlur(Mat inputMat, Size kernelSize){
Mat outputMat = new Mat();
Imgproc.GaussianBlur(inputMat, outputMat, kernelSize, 0);
return outputMat;
}

public static Mat addBlur(Mat inputMat, Size kernelSize){
Mat outputMat = new Mat();
Imgproc.blur(inputMat, outputMat, kernelSize);
return outputMat;
}

public static Mat extractYChannel(@NonNull ImageProxy imgProxy) {
Image img = imgProxy.getImage();

assert img != null;
ByteBuffer yBuffer = img.getPlanes()[0].getBuffer();
byte[] yData = new byte[yBuffer.remaining()];
yBuffer.get(yData);

Mat yMat = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC1);
yMat.put(0, 0, yData);

return yMat;
}

public static Mat thresholdPixels(Mat inputMat, Mat previousImage, int threshold){
Mat diffImage = new Mat();
Core.absdiff(inputMat, previousImage, diffImage);
Mat binaryMat = new Mat();
Imgproc.threshold(diffImage, binaryMat, threshold, 255, Imgproc.THRESH_BINARY);
return binaryMat;
}


public static Mat thresholdContourArea(Mat inputMat, float areaThreshold){
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(inputMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);

Mat outputMat = new Mat(inputMat.size(), inputMat.type(), new Scalar(0));
// Iterate over the contours and draw only the larger contours on the outputMat
for (MatOfPoint contour : contours) {
double contourArea = Imgproc.contourArea(contour);
if (contourArea > areaThreshold) {
Imgproc.drawContours(outputMat, Collections.singletonList(contour), 0, new Scalar(255), -1);
}
}
// Apply the outputMat as a mask to the dilatedImage
Mat maskedImage = new Mat();
inputMat.copyTo(maskedImage, outputMat);
return outputMat;
}

public static Mat dilateBinaryMat(Mat inputMat, Size kernelSize){
Mat dilatedMat = new Mat();
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, kernelSize);
Imgproc.dilate(inputMat, dilatedMat, kernel);
return dilatedMat;
}

public static int countNonZeroPixels(Mat inputImage) {
if (inputImage != null)
return Core.countNonZero(inputImage);
else
return 0;
}


public static void debugMat(Mat mat, ImageView imageView) {
if (imageView == null || mat == null)
return;

Bitmap bitmap = Bitmap.createBitmap(mat.cols(), mat.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(mat, bitmap);

// Display the bitmap in an ImageView
imageView.setImageBitmap(bitmap);
}
}

+ 148
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/Complex.java View File

@@ -0,0 +1,148 @@
package com.example.ueberwachungssystem.Detection.Signalverarbeitung;

import java.util.Objects;

public class Complex {
private final double re; // the real part
private final double im; // the imaginary part

// create a new object with the given real and imaginary parts
public Complex(double real, double imag) {
re = real;
im = imag;
}

// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object
public String toString() {
if (im == 0) return re + "";
if (re == 0) return im + "i";
if (im < 0) return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}

// return abs/modulus/magnitude
public double abs() {
return Math.hypot(re, im);
}

// return angle/phase/argument, normalized to be between -pi and pi
public double phase() {
return Math.atan2(im, re);
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b)
public Complex plus(Complex b) {
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b)
public Complex minus(Complex b) {
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b)
public Complex times(Complex b) {
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}

// return a new object whose value is (this * alpha)
public Complex scale(double alpha) {
return new Complex(alpha * re, alpha * im);
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this
public Complex conjugate() {
return new Complex(re, -im);
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this
public Complex reciprocal() {
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}

// return the real or imaginary part
public double re() {
return re;
}

public double im() {
return im;
}

// return a / b
public Complex divides(Complex b) {
Complex a = this;
return a.times(b.reciprocal());
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this
public Complex exp() {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this
public Complex sin() {
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this
public Complex cos() {
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}

// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this
public Complex tan() {
return sin().divides(cos());
}

// a static version of plus
public static Complex plus(Complex a, Complex b) {
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}

// See Section 3.3.
public boolean equals(Object x) {
if (x == null) return false;
if (this.getClass() != x.getClass()) return false;
Complex that = (Complex) x;
return (this.re == that.re) && (this.im == that.im);
}

// See Section 3.3.
public int hashCode() {
return Objects.hash(re, im);
}

// sample client for testing
public static void main(String[] args) {
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Re(a) = " + a.re());
System.out.println("Im(a) = " + a.im());
System.out.println("b + a = " + b.plus(a));
System.out.println("a - b = " + a.minus(b));
System.out.println("a * b = " + a.times(b));
System.out.println("b * a = " + b.times(a));
System.out.println("a / b = " + a.divides(b));
System.out.println("(a / b) * b = " + a.divides(b).times(b));
System.out.println("conj(a) = " + a.conjugate());
System.out.println("|a| = " + a.abs());
System.out.println("tan(a) = " + a.tan());
}
}

+ 246
- 0
app/src/main/java/com/example/ueberwachungssystem/Detection/Signalverarbeitung/FFT.java View File

@@ -0,0 +1,246 @@
package com.example.ueberwachungssystem.Detection.Signalverarbeitung;
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html

/******************************************************************************
* Compilation: javac FFT.java
* Execution: java FFT n
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java
*
* Compute the FFT and inverse FFT of a length n complex sequence
* using the radix 2 Cooley-Tukey algorithm.
* Bare bones implementation that runs in O(n log n) time and O(n)
* space. Our goal is to optimize the clarity of the code, rather
* than performance.
*
* This implementation uses the primitive root of unity w = e^(-2 pi i / n).
* Some resources use w = e^(2 pi i / n).
*
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf
*
* Limitations
* -----------
* - assumes n is a power of 2
*
* - not the most memory efficient algorithm (because it uses
* an object type for representing complex numbers and because
* it re-allocates memory for the subarray, instead of doing
* in-place or reusing a single temporary array)
*
* For an in-place radix 2 Cooley-Tukey FFT, see
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html
*
******************************************************************************/

public class FFT {

// compute the FFT of x[], assuming its length n is a power of 2
public static Complex[] fft(Complex[] x) {
int n = x.length;

// base case
if (n == 1) return new Complex[]{x[0]};

// radix 2 Cooley-Tukey FFT
if (n % 2 != 0) {
throw new IllegalArgumentException("n is not a power of 2");
}

// compute FFT of even terms
Complex[] even = new Complex[n / 2];
for (int k = 0; k < n / 2; k++) {
even[k] = x[2 * k];
}
Complex[] evenFFT = fft(even);

// compute FFT of odd terms
Complex[] odd = even; // reuse the array (to avoid n log n space)
for (int k = 0; k < n / 2; k++) {
odd[k] = x[2 * k + 1];
}
Complex[] oddFFT = fft(odd);

// combine
Complex[] y = new Complex[n];
for (int k = 0; k < n / 2; k++) {
double kth = -2 * k * Math.PI / n;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = evenFFT[k].plus(wk.times(oddFFT[k]));
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k]));
}
return y;
}


// compute the inverse FFT of x[], assuming its length n is a power of 2
public static Complex[] ifft(Complex[] x) {
int n = x.length;
Complex[] y = new Complex[n];

// take conjugate
for (int i = 0; i < n; i++) {
y[i] = x[i].conjugate();
}

// compute forward FFT
y = fft(y);

// take conjugate again
for (int i = 0; i < n; i++) {
y[i] = y[i].conjugate();
}

// divide by n
for (int i = 0; i < n; i++) {
y[i] = y[i].scale(1.0 / n);
}

return y;

}

// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {

// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new IllegalArgumentException("Dimensions don't agree");
}

int n = x.length;

// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);

// point-wise multiply
Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = a[i].times(b[i]);
}

// compute inverse FFT
return ifft(c);
}


// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);

Complex[] a = new Complex[2 * x.length];
for (int i = 0; i < x.length; i++) a[i] = x[i];
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO;

Complex[] b = new Complex[2 * y.length];
for (int i = 0; i < y.length; i++) b[i] = y[i];
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO;

return cconvolve(a, b);
}

// compute the DFT of x[] via brute force (n^2 time)
public static Complex[] dft(Complex[] x) {
int n = x.length;
Complex ZERO = new Complex(0, 0);
Complex[] y = new Complex[n];
for (int k = 0; k < n; k++) {
y[k] = ZERO;
for (int j = 0; j < n; j++) {
int power = (k * j) % n;
double kth = -2 * power * Math.PI / n;
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = y[k].plus(x[j].times(wkj));
}
}
return y;
}

// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output
public static void show(Complex[] x, String title) {
System.out.println(title);
System.out.println("-------------------");
for (int i = 0; i < x.length; i++) {
System.out.println(x[i]);
}
System.out.println();
}

/***************************************************************************
* Test client and sample execution
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
***************************************************************************/

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
Complex[] x = new Complex[n];

// original data
for (int i = 0; i < n; i++) {
x[i] = new Complex(i, 0);
}
show(x, "x");

// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");

// FFT of original data
Complex[] y2 = dft(x);
show(y2, "y2 = dft(x)");

// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");

// circular convolution of x with itself
Complex[] c = cconvolve(x, x);
show(c, "c = cconvolve(x, x)");

// linear convolution of x with itself
Complex[] d = convolve(x, x);
show(d, "d = convolve(x, x)");
}
}



Loading…
Cancel
Save