@@ -0,0 +1,108 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import static java.lang.Math.sqrt; | |||
import android.content.Context; | |||
import android.hardware.Sensor; | |||
import android.hardware.SensorEvent; | |||
import android.hardware.SensorEventListener; | |||
import android.hardware.SensorManager; | |||
/** | |||
* Accelerometer inherits some methods from abstract Detector class (more info there) | |||
* | |||
* | |||
* USE FROM MAIN ACTIVITY: | |||
* | |||
* Accelerometer beschleunigungssensor = new Accelerometer(this); | |||
* onCreate: | |||
* //Accelerometer Setup | |||
* beschleunigungssensor = new Accelerometer(this, logger, textViewLog); //logger and textview only for debugging necessary | |||
* beschleunigungssensor.getSensor(); | |||
* | |||
* //Starting Detection: | |||
* beschleunigungssensor.startDetection(); | |||
* //Stopping Detection: also recommended at onPause to avoid unnecessary battery consumption | |||
* beschleunigungssensor.stopDetection(); | |||
* | |||
* */ | |||
public class Accelerometer extends Detector implements SensorEventListener { | |||
public SensorManager sensorManager; | |||
private static final int sensorType = Sensor.TYPE_LINEAR_ACCELERATION; | |||
private Sensor accelerometer; | |||
private Context context; | |||
boolean alarm = false; | |||
//Preallocate memory for the data of each axis of the acceleration sensor | |||
float x; | |||
float y; | |||
float z; | |||
float betrag; //Betrag aller drei Achsen sqrt(x*x + y*y + z*z) | |||
private DetectionReport detectionReport; | |||
// In constructor pass Activity, Context and TextView from MainActivity in Accelerometer class | |||
public Accelerometer(Context context){ | |||
super(); //von Detektor | |||
this.context = context; | |||
} | |||
public void getSensor(){ | |||
sensorManager = (SensorManager)context.getSystemService(Context.SENSOR_SERVICE); | |||
if(sensorManager.getSensorList(sensorType).size()==0) { | |||
accelerometer = null; | |||
} | |||
else { | |||
accelerometer = sensorManager.getSensorList(sensorType).get(0); | |||
} | |||
} | |||
@Override | |||
public void onSensorChanged(SensorEvent event) { | |||
try { | |||
checkAlarm(event); | |||
} catch (InterruptedException e) { | |||
throw new RuntimeException(e); | |||
} | |||
} | |||
public void checkAlarm (SensorEvent event) throws InterruptedException { | |||
x = event.values[0]; | |||
y = event.values[1]; | |||
z = event.values[2]; | |||
betrag = (float) sqrt(x*x + y*y + z*z); | |||
float threshold = 1.5F; | |||
if (!alarm) { | |||
if (betrag > threshold) { | |||
alarm = true; | |||
reportViolation("Bewegung", betrag); | |||
} | |||
} else { | |||
if (betrag < threshold) { | |||
alarm = false; | |||
} else { | |||
} | |||
} | |||
} | |||
@Override | |||
public void onAccuracyChanged(Sensor sensor, int accuracy) { | |||
} | |||
@Override | |||
public void startDetection() { | |||
// entspricht void start() | |||
//getSensor(); | |||
if (accelerometer != null) { | |||
sensorManager.registerListener(this, accelerometer, SensorManager.SENSOR_DELAY_GAME); | |||
} | |||
} | |||
@Override | |||
public void stopDetection() { | |||
// entspricht void stop() | |||
sensorManager.unregisterListener(this, accelerometer); | |||
} | |||
} |
@@ -0,0 +1,74 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import android.content.Context; | |||
import android.media.MediaPlayer; | |||
import android.media.MediaRecorder; | |||
import android.widget.Toast; | |||
import java.io.File; | |||
import java.io.IOException; | |||
import java.time.LocalDateTime; | |||
import java.time.format.DateTimeFormatter; | |||
public class AudioRecorder { | |||
private final Context context; | |||
private MediaRecorder mediaRecorder = null; | |||
private boolean isRecording = false; | |||
private File outputDir; // Default: in app files directory | |||
public AudioRecorder (Context context) { | |||
this.context = context; | |||
this.outputDir = context.getFilesDir(); | |||
} | |||
public void startRecording() { | |||
// Handle logic | |||
if (outputDir == null) | |||
return; | |||
if (isRecording) | |||
return; | |||
isRecording = true; | |||
// Setup Audio Recorder for output Format: 3GP | |||
mediaRecorder = new MediaRecorder(); | |||
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC); | |||
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP); | |||
mediaRecorder.setOutputFile(outputDir + "/" + generateFileName() + ".3gp"); | |||
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB); | |||
try { | |||
mediaRecorder.prepare(); | |||
} catch (IOException e) { | |||
e.printStackTrace(); | |||
} | |||
mediaRecorder.start(); | |||
} | |||
public void stopRecording() { | |||
if (mediaRecorder != null) { | |||
mediaRecorder.stop(); | |||
mediaRecorder.reset(); | |||
mediaRecorder.release(); | |||
mediaRecorder = null; | |||
isRecording = false; | |||
Toast.makeText(context, "audio recording saved", Toast.LENGTH_SHORT).show(); | |||
} | |||
} | |||
public boolean isRecording(){ | |||
return isRecording; | |||
} | |||
public void setOutputDir(File outputDir) { | |||
this.outputDir = outputDir; | |||
} | |||
private String generateFileName(){ | |||
// Get the current timestamp | |||
LocalDateTime currentTime = LocalDateTime.now(); | |||
// Define the format for the timestamp | |||
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyyMMdd_HHmmss"); | |||
// Return the timestamp as a string | |||
return currentTime.format(formatter); | |||
} | |||
} |
@@ -0,0 +1,76 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import android.os.CountDownTimer; | |||
import androidx.annotation.NonNull; | |||
import androidx.camera.core.ExperimentalGetImage; | |||
abstract public class Detector { | |||
private OnDetectionListener listener; | |||
private boolean isDetecting = false; | |||
private boolean extendViolation = false; | |||
// Countdown parameters | |||
private final int COUNTDOWN_TIME = 10000; // milliseconds | |||
private final int COUNTDOWN_POLLING_TIME = 100; // milliseconds | |||
/** Constructor - takes context of current activity */ | |||
public Detector() {} | |||
/** On Detection Listener - runs when violation is reported */ | |||
public interface OnDetectionListener { | |||
void onDetection(@NonNull DetectionReport detectionReport); | |||
} | |||
public void setOnDetectionListener(@NonNull OnDetectionListener listener) { | |||
this.listener = listener; | |||
} | |||
/** Triggers onDetectionListener - call this to trigger violation/alarm */ | |||
public void reportViolation(String detectionType, float amplitude) { | |||
if (listener != null) { | |||
if (!isDetecting) { | |||
isDetecting = true; | |||
DetectionReport detectionReport = new DetectionReport(true, detectionType, amplitude); | |||
listener.onDetection(detectionReport); | |||
startDetectionTimer(detectionType, amplitude); | |||
} else { | |||
extendViolation = true; | |||
} | |||
} else { | |||
isDetecting = false; | |||
extendViolation = false; | |||
} | |||
} | |||
private void startDetectionTimer(String detectionType, float amplitude) { | |||
isDetecting = true; | |||
new CountDownTimer((long) COUNTDOWN_TIME, COUNTDOWN_POLLING_TIME) { | |||
@Override | |||
public void onTick(long millisUntilFinished) { | |||
if (extendViolation) { | |||
extendViolation = false; | |||
startDetectionTimer(detectionType, amplitude); | |||
this.cancel(); | |||
} | |||
} | |||
@Override | |||
public void onFinish() { | |||
isDetecting = false; | |||
DetectionReport detectionReport = new DetectionReport(false, detectionType, amplitude); | |||
listener.onDetection(detectionReport); | |||
} | |||
}.start(); | |||
} | |||
public void extendViolation(){ | |||
this.extendViolation = true; | |||
} | |||
/** Starts Detection (abstract method: needs to be overridden in child class) */ | |||
public abstract void startDetection(); | |||
/** Stops Detection (abstract method: needs to be overridden in child class) */ | |||
public abstract void stopDetection(); | |||
} |
@@ -0,0 +1,109 @@ | |||
package com.example.ueberwachungssystem.Detection; | |||
import android.graphics.Bitmap; | |||
import android.media.Image; | |||
import android.widget.ImageView; | |||
import androidx.annotation.NonNull; | |||
import androidx.camera.core.ExperimentalGetImage; | |||
import androidx.camera.core.ImageProxy; | |||
import org.opencv.android.Utils; | |||
import org.opencv.core.Core; | |||
import org.opencv.core.CvType; | |||
import org.opencv.core.Mat; | |||
import org.opencv.core.MatOfPoint; | |||
import org.opencv.core.Scalar; | |||
import org.opencv.core.Size; | |||
import org.opencv.imgproc.Imgproc; | |||
import java.nio.ByteBuffer; | |||
import java.util.ArrayList; | |||
import java.util.Collections; | |||
import java.util.List; | |||
@ExperimentalGetImage | |||
public class OpenCVHelper { | |||
/** OpenCV helper methods **/ | |||
public static Mat addGaussianBlur(Mat inputMat, Size kernelSize){ | |||
Mat outputMat = new Mat(); | |||
Imgproc.GaussianBlur(inputMat, outputMat, kernelSize, 0); | |||
return outputMat; | |||
} | |||
public static Mat addBlur(Mat inputMat, Size kernelSize){ | |||
Mat outputMat = new Mat(); | |||
Imgproc.blur(inputMat, outputMat, kernelSize); | |||
return outputMat; | |||
} | |||
public static Mat extractYChannel(@NonNull ImageProxy imgProxy) { | |||
Image img = imgProxy.getImage(); | |||
assert img != null; | |||
ByteBuffer yBuffer = img.getPlanes()[0].getBuffer(); | |||
byte[] yData = new byte[yBuffer.remaining()]; | |||
yBuffer.get(yData); | |||
Mat yMat = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC1); | |||
yMat.put(0, 0, yData); | |||
return yMat; | |||
} | |||
public static Mat thresholdPixels(Mat inputMat, Mat previousImage, int threshold){ | |||
Mat diffImage = new Mat(); | |||
Core.absdiff(inputMat, previousImage, diffImage); | |||
Mat binaryMat = new Mat(); | |||
Imgproc.threshold(diffImage, binaryMat, threshold, 255, Imgproc.THRESH_BINARY); | |||
return binaryMat; | |||
} | |||
public static Mat thresholdContourArea(Mat inputMat, float areaThreshold){ | |||
List<MatOfPoint> contours = new ArrayList<>(); | |||
Mat hierarchy = new Mat(); | |||
Imgproc.findContours(inputMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); | |||
Mat outputMat = new Mat(inputMat.size(), inputMat.type(), new Scalar(0)); | |||
// Iterate over the contours and draw only the larger contours on the outputMat | |||
for (MatOfPoint contour : contours) { | |||
double contourArea = Imgproc.contourArea(contour); | |||
if (contourArea > areaThreshold) { | |||
Imgproc.drawContours(outputMat, Collections.singletonList(contour), 0, new Scalar(255), -1); | |||
} | |||
} | |||
// Apply the outputMat as a mask to the dilatedImage | |||
Mat maskedImage = new Mat(); | |||
inputMat.copyTo(maskedImage, outputMat); | |||
return outputMat; | |||
} | |||
public static Mat dilateBinaryMat(Mat inputMat, Size kernelSize){ | |||
Mat dilatedMat = new Mat(); | |||
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, kernelSize); | |||
Imgproc.dilate(inputMat, dilatedMat, kernel); | |||
return dilatedMat; | |||
} | |||
public static int countNonZeroPixels(Mat inputImage) { | |||
if (inputImage != null) | |||
return Core.countNonZero(inputImage); | |||
else | |||
return 0; | |||
} | |||
public static void debugMat(Mat mat, ImageView imageView) { | |||
if (imageView == null || mat == null) | |||
return; | |||
Bitmap bitmap = Bitmap.createBitmap(mat.cols(), mat.rows(), Bitmap.Config.ARGB_8888); | |||
Utils.matToBitmap(mat, bitmap); | |||
// Display the bitmap in an ImageView | |||
imageView.setImageBitmap(bitmap); | |||
} | |||
} |
@@ -0,0 +1,148 @@ | |||
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||
import java.util.Objects; | |||
public class Complex { | |||
private final double re; // the real part | |||
private final double im; // the imaginary part | |||
// create a new object with the given real and imaginary parts | |||
public Complex(double real, double imag) { | |||
re = real; | |||
im = imag; | |||
} | |||
// return a string representation of the invoking com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object | |||
public String toString() { | |||
if (im == 0) return re + ""; | |||
if (re == 0) return im + "i"; | |||
if (im < 0) return re + " - " + (-im) + "i"; | |||
return re + " + " + im + "i"; | |||
} | |||
// return abs/modulus/magnitude | |||
public double abs() { | |||
return Math.hypot(re, im); | |||
} | |||
// return angle/phase/argument, normalized to be between -pi and pi | |||
public double phase() { | |||
return Math.atan2(im, re); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this + b) | |||
public Complex plus(Complex b) { | |||
Complex a = this; // invoking object | |||
double real = a.re + b.re; | |||
double imag = a.im + b.im; | |||
return new Complex(real, imag); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this - b) | |||
public Complex minus(Complex b) { | |||
Complex a = this; | |||
double real = a.re - b.re; | |||
double imag = a.im - b.im; | |||
return new Complex(real, imag); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is (this * b) | |||
public Complex times(Complex b) { | |||
Complex a = this; | |||
double real = a.re * b.re - a.im * b.im; | |||
double imag = a.re * b.im + a.im * b.re; | |||
return new Complex(real, imag); | |||
} | |||
// return a new object whose value is (this * alpha) | |||
public Complex scale(double alpha) { | |||
return new Complex(alpha * re, alpha * im); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the conjugate of this | |||
public Complex conjugate() { | |||
return new Complex(re, -im); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the reciprocal of this | |||
public Complex reciprocal() { | |||
double scale = re * re + im * im; | |||
return new Complex(re / scale, -im / scale); | |||
} | |||
// return the real or imaginary part | |||
public double re() { | |||
return re; | |||
} | |||
public double im() { | |||
return im; | |||
} | |||
// return a / b | |||
public Complex divides(Complex b) { | |||
Complex a = this; | |||
return a.times(b.reciprocal()); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex exponential of this | |||
public Complex exp() { | |||
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex sine of this | |||
public Complex sin() { | |||
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex cosine of this | |||
public Complex cos() { | |||
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im)); | |||
} | |||
// return a new com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex object whose value is the complex tangent of this | |||
public Complex tan() { | |||
return sin().divides(cos()); | |||
} | |||
// a static version of plus | |||
public static Complex plus(Complex a, Complex b) { | |||
double real = a.re + b.re; | |||
double imag = a.im + b.im; | |||
Complex sum = new Complex(real, imag); | |||
return sum; | |||
} | |||
// See Section 3.3. | |||
public boolean equals(Object x) { | |||
if (x == null) return false; | |||
if (this.getClass() != x.getClass()) return false; | |||
Complex that = (Complex) x; | |||
return (this.re == that.re) && (this.im == that.im); | |||
} | |||
// See Section 3.3. | |||
public int hashCode() { | |||
return Objects.hash(re, im); | |||
} | |||
// sample client for testing | |||
public static void main(String[] args) { | |||
Complex a = new Complex(5.0, 6.0); | |||
Complex b = new Complex(-3.0, 4.0); | |||
System.out.println("a = " + a); | |||
System.out.println("b = " + b); | |||
System.out.println("Re(a) = " + a.re()); | |||
System.out.println("Im(a) = " + a.im()); | |||
System.out.println("b + a = " + b.plus(a)); | |||
System.out.println("a - b = " + a.minus(b)); | |||
System.out.println("a * b = " + a.times(b)); | |||
System.out.println("b * a = " + b.times(a)); | |||
System.out.println("a / b = " + a.divides(b)); | |||
System.out.println("(a / b) * b = " + a.divides(b).times(b)); | |||
System.out.println("conj(a) = " + a.conjugate()); | |||
System.out.println("|a| = " + a.abs()); | |||
System.out.println("tan(a) = " + a.tan()); | |||
} | |||
} |
@@ -0,0 +1,246 @@ | |||
package com.example.ueberwachungssystem.Detection.Signalverarbeitung; | |||
// Source: https://introcs.cs.princeton.edu/java/97data/FFT.java.html | |||
/****************************************************************************** | |||
* Compilation: javac FFT.java | |||
* Execution: java FFT n | |||
* Dependencies: com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex.java | |||
* | |||
* Compute the FFT and inverse FFT of a length n complex sequence | |||
* using the radix 2 Cooley-Tukey algorithm. | |||
* Bare bones implementation that runs in O(n log n) time and O(n) | |||
* space. Our goal is to optimize the clarity of the code, rather | |||
* than performance. | |||
* | |||
* This implementation uses the primitive root of unity w = e^(-2 pi i / n). | |||
* Some resources use w = e^(2 pi i / n). | |||
* | |||
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf | |||
* | |||
* Limitations | |||
* ----------- | |||
* - assumes n is a power of 2 | |||
* | |||
* - not the most memory efficient algorithm (because it uses | |||
* an object type for representing complex numbers and because | |||
* it re-allocates memory for the subarray, instead of doing | |||
* in-place or reusing a single temporary array) | |||
* | |||
* For an in-place radix 2 Cooley-Tukey FFT, see | |||
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html | |||
* | |||
******************************************************************************/ | |||
public class FFT { | |||
// compute the FFT of x[], assuming its length n is a power of 2 | |||
public static Complex[] fft(Complex[] x) { | |||
int n = x.length; | |||
// base case | |||
if (n == 1) return new Complex[]{x[0]}; | |||
// radix 2 Cooley-Tukey FFT | |||
if (n % 2 != 0) { | |||
throw new IllegalArgumentException("n is not a power of 2"); | |||
} | |||
// compute FFT of even terms | |||
Complex[] even = new Complex[n / 2]; | |||
for (int k = 0; k < n / 2; k++) { | |||
even[k] = x[2 * k]; | |||
} | |||
Complex[] evenFFT = fft(even); | |||
// compute FFT of odd terms | |||
Complex[] odd = even; // reuse the array (to avoid n log n space) | |||
for (int k = 0; k < n / 2; k++) { | |||
odd[k] = x[2 * k + 1]; | |||
} | |||
Complex[] oddFFT = fft(odd); | |||
// combine | |||
Complex[] y = new Complex[n]; | |||
for (int k = 0; k < n / 2; k++) { | |||
double kth = -2 * k * Math.PI / n; | |||
Complex wk = new Complex(Math.cos(kth), Math.sin(kth)); | |||
y[k] = evenFFT[k].plus(wk.times(oddFFT[k])); | |||
y[k + n / 2] = evenFFT[k].minus(wk.times(oddFFT[k])); | |||
} | |||
return y; | |||
} | |||
// compute the inverse FFT of x[], assuming its length n is a power of 2 | |||
public static Complex[] ifft(Complex[] x) { | |||
int n = x.length; | |||
Complex[] y = new Complex[n]; | |||
// take conjugate | |||
for (int i = 0; i < n; i++) { | |||
y[i] = x[i].conjugate(); | |||
} | |||
// compute forward FFT | |||
y = fft(y); | |||
// take conjugate again | |||
for (int i = 0; i < n; i++) { | |||
y[i] = y[i].conjugate(); | |||
} | |||
// divide by n | |||
for (int i = 0; i < n; i++) { | |||
y[i] = y[i].scale(1.0 / n); | |||
} | |||
return y; | |||
} | |||
// compute the circular convolution of x and y | |||
public static Complex[] cconvolve(Complex[] x, Complex[] y) { | |||
// should probably pad x and y with 0s so that they have same length | |||
// and are powers of 2 | |||
if (x.length != y.length) { | |||
throw new IllegalArgumentException("Dimensions don't agree"); | |||
} | |||
int n = x.length; | |||
// compute FFT of each sequence | |||
Complex[] a = fft(x); | |||
Complex[] b = fft(y); | |||
// point-wise multiply | |||
Complex[] c = new Complex[n]; | |||
for (int i = 0; i < n; i++) { | |||
c[i] = a[i].times(b[i]); | |||
} | |||
// compute inverse FFT | |||
return ifft(c); | |||
} | |||
// compute the linear convolution of x and y | |||
public static Complex[] convolve(Complex[] x, Complex[] y) { | |||
Complex ZERO = new Complex(0, 0); | |||
Complex[] a = new Complex[2 * x.length]; | |||
for (int i = 0; i < x.length; i++) a[i] = x[i]; | |||
for (int i = x.length; i < 2 * x.length; i++) a[i] = ZERO; | |||
Complex[] b = new Complex[2 * y.length]; | |||
for (int i = 0; i < y.length; i++) b[i] = y[i]; | |||
for (int i = y.length; i < 2 * y.length; i++) b[i] = ZERO; | |||
return cconvolve(a, b); | |||
} | |||
// compute the DFT of x[] via brute force (n^2 time) | |||
public static Complex[] dft(Complex[] x) { | |||
int n = x.length; | |||
Complex ZERO = new Complex(0, 0); | |||
Complex[] y = new Complex[n]; | |||
for (int k = 0; k < n; k++) { | |||
y[k] = ZERO; | |||
for (int j = 0; j < n; j++) { | |||
int power = (k * j) % n; | |||
double kth = -2 * power * Math.PI / n; | |||
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth)); | |||
y[k] = y[k].plus(x[j].times(wkj)); | |||
} | |||
} | |||
return y; | |||
} | |||
// display an array of com.example.ueberwachungssystem.Detection.Signalverarbeitung.Complex numbers to standard output | |||
public static void show(Complex[] x, String title) { | |||
System.out.println(title); | |||
System.out.println("-------------------"); | |||
for (int i = 0; i < x.length; i++) { | |||
System.out.println(x[i]); | |||
} | |||
System.out.println(); | |||
} | |||
/*************************************************************************** | |||
* Test client and sample execution | |||
* | |||
* % java FFT 4 | |||
* x | |||
* ------------------- | |||
* -0.03480425839330703 | |||
* 0.07910192950176387 | |||
* 0.7233322451735928 | |||
* 0.1659819820667019 | |||
* | |||
* y = fft(x) | |||
* ------------------- | |||
* 0.9336118983487516 | |||
* -0.7581365035668999 + 0.08688005256493803i | |||
* 0.44344407521182005 | |||
* -0.7581365035668999 - 0.08688005256493803i | |||
* | |||
* z = ifft(y) | |||
* ------------------- | |||
* -0.03480425839330703 | |||
* 0.07910192950176387 + 2.6599344570851287E-18i | |||
* 0.7233322451735928 | |||
* 0.1659819820667019 - 2.6599344570851287E-18i | |||
* | |||
* c = cconvolve(x, x) | |||
* ------------------- | |||
* 0.5506798633981853 | |||
* 0.23461407150576394 - 4.033186818023279E-18i | |||
* -0.016542951108772352 | |||
* 0.10288019294318276 + 4.033186818023279E-18i | |||
* | |||
* d = convolve(x, x) | |||
* ------------------- | |||
* 0.001211336402308083 - 3.122502256758253E-17i | |||
* -0.005506167987577068 - 5.058885073636224E-17i | |||
* -0.044092969479563274 + 2.1934338938072244E-18i | |||
* 0.10288019294318276 - 3.6147323062478115E-17i | |||
* 0.5494685269958772 + 3.122502256758253E-17i | |||
* 0.240120239493341 + 4.655566391833896E-17i | |||
* 0.02755001837079092 - 2.1934338938072244E-18i | |||
* 4.01805098805014E-17i | |||
* | |||
***************************************************************************/ | |||
public static void main(String[] args) { | |||
int n = Integer.parseInt(args[0]); | |||
Complex[] x = new Complex[n]; | |||
// original data | |||
for (int i = 0; i < n; i++) { | |||
x[i] = new Complex(i, 0); | |||
} | |||
show(x, "x"); | |||
// FFT of original data | |||
Complex[] y = fft(x); | |||
show(y, "y = fft(x)"); | |||
// FFT of original data | |||
Complex[] y2 = dft(x); | |||
show(y2, "y2 = dft(x)"); | |||
// take inverse FFT | |||
Complex[] z = ifft(y); | |||
show(z, "z = ifft(y)"); | |||
// circular convolution of x with itself | |||
Complex[] c = cconvolve(x, x); | |||
show(c, "c = cconvolve(x, x)"); | |||
// linear convolution of x with itself | |||
Complex[] d = convolve(x, x); | |||
show(d, "d = convolve(x, x)"); | |||
} | |||
} | |||