forked from freudenreichan/info2Praktikum-NeuronalesNetz
NeuralNetworkTest fertig?
This commit is contained in:
parent
8c2ed38abf
commit
934ba2d06e
@ -9,39 +9,50 @@
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO : Fehlerbehandlung
|
||||
// Öffne die Datei zum Schreiben im Binärmodus
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file) {
|
||||
perror("Fehler beim Öffnen der Datei");
|
||||
if (!file) return;
|
||||
|
||||
// Schreibe den Datei-Tag
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), file);
|
||||
|
||||
// Schreibe die Anzahl der Layer
|
||||
if (nn.numberOfLayers == 0) {
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
|
||||
const char *header = "__info2_neural_network_file_format__";
|
||||
fwrite(header, sizeof(char), strlen(header), file);
|
||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&output, sizeof(int), 1, file);
|
||||
|
||||
unsigned int inputDim = (i == 0) ? layer.weights.cols : 0; // nur beim ersten Layer
|
||||
unsigned int outputDim = layer.weights.rows;
|
||||
// Schreibe die Layer-Daten
|
||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
if (i == 0) {
|
||||
// erstes Layer: inputDim und outputDim schreiben
|
||||
fwrite(&inputDim, sizeof(unsigned int), 1, file);
|
||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
||||
} else {
|
||||
// nur outputDim für weitere Layer
|
||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
{
|
||||
int nextOut = nn.layers[i + 1].weights.rows;
|
||||
fwrite(&nextOut, sizeof(int), 1, file);
|
||||
}
|
||||
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), layer.weights.rows * layer.weights.cols, file);
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), layer.biases.rows * layer.biases.cols, file);
|
||||
}
|
||||
|
||||
unsigned int zero = 0;
|
||||
fwrite(&zero, sizeof(unsigned int), 1, file);
|
||||
fclose(file);
|
||||
|
||||
// Debug
|
||||
// Debuging-Ausgabe
|
||||
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user