// One (this) to do all kinds of stuff to the picture (grayscale conversion, threshold, gauss etc etc) | // One (this) to do all kinds of stuff to the picture (grayscale conversion, threshold, gauss etc etc) | ||||
// And one (the other one) to segment the lines. | // And one (the other one) to segment the lines. | ||||
// No return value here as the input is passed by reference -> directly modified. | // No return value here as the input is passed by reference -> directly modified. | ||||
vector<Vec4i> lines; | |||||
cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY); | cvtColor(inputPicture, inputPicture, COLOR_BGR2GRAY); | ||||
threshold(inputPicture, inputPicture, thresholdValue, 255, THRESH_BINARY); | threshold(inputPicture, inputPicture, thresholdValue, 255, THRESH_BINARY); | ||||
GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0); | |||||
Canny(inputPicture, inputPicture, 50, 200, 3); | |||||
HoughLinesP(inputPicture, lines, 1, CV_PI/180, 150, 0, 0); | |||||
//Draw lines | |||||
for( size_t i = 0; i < lines.size(); i++ ) | |||||
{ | |||||
line( inputPicture, Point(lines[i][0], lines[i][1]), | |||||
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); | |||||
} | |||||
vector<VectorOfLines> vectors; | |||||
Point point11; | |||||
Point point12; | |||||
Point point21; | |||||
Point point22; | |||||
for( size_t i = 0; i < lines.size(); i++ ) | |||||
{ | |||||
point11 = Point(lines[i][0], lines[i][1]); | |||||
point12 = Point( lines[i][2], lines[i][3]); | |||||
float gradient1 = VectorOfLines::calcGradient(point11, point12); | |||||
for( size_t j = 0; j < lines.size(); j++ ) | |||||
{ | |||||
if(j != i){ | |||||
point21 = Point(lines[j][0], lines[j][1]); | |||||
point22 = Point(lines[j][2], lines[j][3]); | |||||
float gradient2 = VectorOfLines::calcGradient(point21, point22); | |||||
float gradient12 = VectorOfLines::calcGradient(point12, point21); | |||||
if((norm(gradient1 - gradient2) < 0.05) & (norm(gradient1 - gradient12) < 0.05)) | |||||
{ | |||||
//To Do: add line between 2 lines | |||||
} | |||||
} | |||||
} | |||||
} | |||||
imshow("Result", inputPicture); | |||||
waitKey(0); | |||||
destroyWindow("Result"); | |||||
for( size_t i = 0; i < lines.size(); i++ ) | |||||
{ | |||||
line( inputPicture, Point(lines[i][0], lines[i][1]), | |||||
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); | |||||
} | |||||
GaussianBlur(inputPicture, inputPicture, Size(gaussKernelSize, gaussKernelSize), 0); | |||||
Canny(inputPicture, inputPicture, 50, 100, 3); | |||||
} | } | ||||
std::vector<LFRLine> Processing::calculateLineSegments(const Mat& inputPicture) | |||||
std::vector<Vec4i> Processing::calculateLineSegments(const Mat& inputPicture) | |||||
{ | { | ||||
//See following link | |||||
//https://stackoverflow.com/questions/45322630/how-to-detect-lines-in-opencv | //https://stackoverflow.com/questions/45322630/how-to-detect-lines-in-opencv | ||||
return std::vector<LFRLine>(); | |||||
vector<Vec4i> lines; | |||||
VectorOfLines linesInVectors; | |||||
HoughLinesP(inputPicture, lines, 1, CV_PI/360, 150, 0, 250); | |||||
//lines = linesInVectors.findMiddleLine(lines); | |||||
return lines; | |||||
} | } |
void processImage(Mat& inputPicture, int thresholdValue, int gaussKernelSize); | void processImage(Mat& inputPicture, int thresholdValue, int gaussKernelSize); | ||||
std::vector<LFRLine> calculateLineSegments(const Mat& inputPicture); | |||||
std::vector<Vec4i> calculateLineSegments(const Mat& inputPicture); | |||||
}; | }; |
{ | { | ||||
} | } | ||||
float VectorOfLines::calcGradient(Point p0, Point p1) | |||||
VectorOfLines::~VectorOfLines() | |||||
{ | { | ||||
return (p1.y - p0.y)/(p1.x - p0.x); | |||||
} | |||||
double VectorOfLines::calcGradient(Point p0, Point p1) | |||||
{ | |||||
double gradient = (p1.y - p0.y)/(p1.x - p0.x + 1e-10); | |||||
return p1.x > p0.x ? gradient : - gradient; | |||||
} | } | ||||
float VectorOfLines::calcZeroPoint(cv::Point x, float m) | float VectorOfLines::calcZeroPoint(cv::Point x, float m) | ||||
{ | { | ||||
return 0.0; | |||||
} | |||||
double VectorOfLines::calcDistance(Point p0, Point p1) | |||||
{ | |||||
return sqrt(pow(p1.y - p0.y, 2) + pow(p1.x - p0.x, 2)); | |||||
} | |||||
vector<Vec4i> VectorOfLines::findMiddleLine(vector<Vec4i> &lines){ | |||||
Point point11; | |||||
Point point12; | |||||
Point point21; | |||||
Point point22; | |||||
vector<Vec4i> middleLines; | |||||
for( size_t i = 0; i < (lines.size() - 1); i++ ) | |||||
{ | |||||
point11 = Point(lines[i][0], lines[i][1]); | |||||
point12 = Point( lines[i][2], lines[i][3]); | |||||
double gradient1 = VectorOfLines::calcGradient(point11, point12); | |||||
//Compare every Line with the other | |||||
for( size_t j = 0; j < (lines.size()); j++ ) | |||||
{ | |||||
if(j != i) | |||||
{ | |||||
point21 = Point(lines[j][0], lines[j][1]); | |||||
point22 = Point(lines[j][2], lines[j][3]); | |||||
double gradient2 = VectorOfLines::calcGradient(point21, point22); | |||||
if(norm(gradient1 - gradient2) < 0.15) | |||||
{ | |||||
middleLines.push_back(Vec4i((point11.x+point21.x)/2, (point11.y+point21.y)/2, (point12.x+point22.x)/2, (point12.y+point22.y)/2)); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
return middleLines; | |||||
} | } |
float zeroPoint; | float zeroPoint; | ||||
VectorOfLines(); | VectorOfLines(); | ||||
~VectorOfLines(); | ~VectorOfLines(); | ||||
static float calcGradient(Point x, Point y); | |||||
static double calcGradient(Point x, Point y); | |||||
float calcZeroPoint(cv::Point x, float m); | float calcZeroPoint(cv::Point x, float m); | ||||
static double calcDistance(Point p0, Point p1); | |||||
vector<Vec4i> findMiddleLine(vector<Vec4i> &lines); | |||||
}; | }; |
const int thresholdBinary = 140; | const int thresholdBinary = 140; | ||||
const int videoHeight = 240; | const int videoHeight = 240; | ||||
const int videoWidth = 320; | const int videoWidth = 320; | ||||
const int gaussKernelSize = 11; | |||||
const int gaussKernelSize = 21; | |||||
LFR lfr(videoHeight, videoWidth, thresholdBinary, gaussKernelSize); | LFR lfr(videoHeight, videoWidth, thresholdBinary, gaussKernelSize); | ||||
lfr.startLoop(); | lfr.startLoop(); |
while(iAmLooping) | while(iAmLooping) | ||||
{ | { | ||||
Mat image = input.readFile("C:\\Line-Following-Robot\\Test_data"); | Mat image = input.readFile("C:\\Line-Following-Robot\\Test_data"); | ||||
processing.processImage(image, this->thresholdBinary, this->gaussKernelSize); | |||||
std::vector<LFRLine> lines = processing.calculateLineSegments(image); | |||||
Mat processedImage = image; | |||||
processing.processImage(processedImage, this->thresholdBinary, this->gaussKernelSize); | |||||
std::vector<Vec4i> lines = processing.calculateLineSegments(processedImage); | |||||
for( size_t i = 0; i < lines.size(); i++ ) | |||||
{ | |||||
line( image, Point(lines[i][0], lines[i][1]), | |||||
Point( lines[i][2], lines[i][3]), (0,0,255), 1, 8 ); | |||||
} | |||||
imshow("Display window", image); | imshow("Display window", image); | ||||
char c = (char)waitKey(1); | char c = (char)waitKey(1); | ||||
} | } |