Browse Source

New approach using a roi and drawContours method

pull/1/head
Tim Zeuner 2 years ago
parent
commit
977f531f72
1 changed files with 55 additions and 11 deletions
  1. 55
    11
      AutonomousMode/Spielwiese/spielwiese.cpp

+ 55
- 11
AutonomousMode/Spielwiese/spielwiese.cpp View File

#include <opencv2/opencv.hpp> #include <opencv2/opencv.hpp>


#include <iostream> #include <iostream>
#include <direct.h>


#include <input.h> #include <input.h>
#include <processing.h> #include <processing.h>


void in_depth_processing_chain(int thresholdBinary, int videoHeight, int videoWidth, int gaussKernelSize, int thresholdCanny1, int thresholdCanny2, int apertureSizeCanny) void in_depth_processing_chain(int thresholdBinary, int videoHeight, int videoWidth, int gaussKernelSize, int thresholdCanny1, int thresholdCanny2, int apertureSizeCanny)
{ {
std::string outputFolder = "C:\\Users\\User\\Desktop\\temp";
Input input(videoHeight, videoWidth); Input input(videoHeight, videoWidth);


Mat image = input.readFile("C:\\Users\\User\\Desktop\\Studium\\02_Master_MSY\\2. Semester Winter 22 23\\Projekt\\Line-Following-Robot\\Test_data");
imwrite(outputFolder + "\\01_input.jpg", image);
cvtColor(image, image, COLOR_BGR2GRAY);
imwrite(outputFolder + "\\02_color_convert.jpg", image);
GaussianBlur(image, image, Size(gaussKernelSize, gaussKernelSize), 0);
imwrite(outputFolder + "\\03_gauss.jpg", image);
threshold(image, image, thresholdBinary, 255, THRESH_BINARY);
imwrite(outputFolder + "\\04_threshold.jpg", image);
Canny(image, image, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
imwrite(outputFolder + "\\05_canny.jpg", image);
std::string outputFolder = "C:\\Users\\User\\Desktop\\temp";
std::string inputFolder = "C:\\Users\\User\\Desktop\\Studium\\02_Master_MSY\\2. Semester Winter 22 23\\Projekt\\Line-Following-Robot\\AutonomousMode\\Test_data";

std::vector<std::string> filenames;
cv::glob(inputFolder, filenames);

//filenames.begin(), filenames.end()
int i = 0;
for(std::vector<std::string>::iterator it = filenames.begin(); it != filenames.end(); it++)
{
std::string current_output = outputFolder + "\\" + to_string(i);
std::cout << current_output << std::endl;
const char* current_output_char = current_output.c_str();
_mkdir(current_output_char);

std::string inputFile = inputFolder + "\\image" + to_string(i+1) + ".jpeg";
Mat original_image = input.readFile(inputFile);
imwrite(current_output + "\\00_input.jpg", original_image);

Rect roi = Rect(0, original_image.rows*(7.5/12.0), original_image.cols, original_image.rows/12);

Mat image = original_image(roi);


imwrite(current_output + "\\01_roi.jpg", image);
cvtColor(image, image, COLOR_BGR2GRAY);
imwrite(current_output + "\\02_color_convert.jpg", image);
GaussianBlur(image, image, Size(gaussKernelSize, gaussKernelSize), 0);
imwrite(current_output + "\\03_gauss.jpg", image);
threshold(image, image, thresholdBinary, 255, THRESH_BINARY);
imwrite(current_output + "\\04_threshold.jpg", image);

// Opening (reduces noise)
Mat kernel(5,5, CV_8UC1,1);
morphologyEx(image, image, 2, kernel);
imwrite(current_output + "\\05_opening.jpg", image);

//Canny(image, image, thresholdCanny1, thresholdCanny2, apertureSizeCanny);
//imwrite(outputFolder + "\\06_canny.jpg", image);

vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

findContours(image,contours, hierarchy, RETR_LIST, CHAIN_APPROX_SIMPLE);

for( int i = 0; i< contours.size(); i++ ) // iterate through each contour.
{
double a = contourArea( contours[i],false); // Find the area of contour
if(a > 3500)
{
drawContours(original_image, contours, i, Scalar(0,255,255), 1, 8, hierarchy, 0, Point(0,original_image.rows*(7.5/12.0)));
}
}
imwrite(current_output + "\\06_contours.jpg", original_image);
i++;
}
} }





Loading…
Cancel
Save