Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
a325c8ddb6 |
@ -6,6 +6,7 @@ library work;
|
||||
use work.reg32.all;
|
||||
use work.task.all;
|
||||
|
||||
-- Anlegen der Variablen des Programms
|
||||
entity add is
|
||||
port (
|
||||
clk : in std_logic;
|
||||
@ -25,12 +26,30 @@ entity add is
|
||||
);
|
||||
end entity add;
|
||||
|
||||
-- Signale anlegen
|
||||
architecture rtl of add is
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
signal index_run :integer range 0 to 2;
|
||||
signal start_value : std_logic;
|
||||
signal done_value : std_logic;
|
||||
signal write_value : std_logic_vector( 31 downto 0 );
|
||||
|
||||
begin
|
||||
-- Instanziierung der float_add.vhd
|
||||
u_float_add : entity work.float_add
|
||||
port map(
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
start => start_value,
|
||||
done => done_value,
|
||||
a => signal_a_readdata,
|
||||
b => signal_b_readdata,
|
||||
sum => write_value
|
||||
);
|
||||
|
||||
-- Zustandsautomat fuer die Zustandsswechsel
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
@ -40,7 +59,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
if ( index = work.task.STREAM_LEN ) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -50,24 +69,55 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
-- Zustandautomat fuer die Berechnung
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
index <= 0;
|
||||
-- alle Signale in der Reset Bedingung initialisieren
|
||||
start_value <= '0';
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
signal_write <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
-- idle
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
-- running
|
||||
when work.task.TASK_RUNNING =>
|
||||
case index_run is
|
||||
|
||||
when 0 =>
|
||||
signal_writedata <= ( others => '0' );
|
||||
start_value <= '1';
|
||||
index_run <= index_run + 1;
|
||||
|
||||
when 1 =>
|
||||
if(done_value = '1') then
|
||||
start_value <= '0';
|
||||
|
||||
signal_write <= '1';
|
||||
signal_writedata <= write_value;
|
||||
|
||||
signal_a_read <= '1';
|
||||
signal_b_read <= '1';
|
||||
|
||||
index_run <= index_run + 1;
|
||||
end if;
|
||||
when 2 =>
|
||||
signal_write <= '0';
|
||||
signal_a_read <= '0';
|
||||
signal_b_read <= '0';
|
||||
index_run <= 0;
|
||||
index <= index + 1;
|
||||
end case;
|
||||
-- done
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
@ -1,26 +1,13 @@
|
||||
------------------------------------------------------------------------
|
||||
-- fft
|
||||
--
|
||||
-- calculation of FFT magnitudes
|
||||
-- calculation of FFT magnitude
|
||||
--
|
||||
-- Inputs:
|
||||
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
|
||||
--
|
||||
-- Outputs
|
||||
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
|
||||
--
|
||||
--
|
||||
-- Zahlen aus dem Eingangs-FIFO liegen in 32-Bit Floating Point mit Wertebereich +-16 vor
|
||||
-- Diese Zahlen müssen in Floating Point auf den Wertebereich +-1 gebracht werden (In Floating Point können Sie durch :16 teilen, wenn Sie den Exponenten der Floating Point Zahl um -4 verkleinern, falls dieser ungleich Null ist)
|
||||
-- Die auf den Wertebereich +-1 gebrachten Floating Point Zahlen mit to_fixed auf eine Fixpointzahl wandeln
|
||||
-- Diese Fixpointzahl kann dem FFT IP-Core (fftmain) als Eingangswert übergeben werden (Realteil = skalierte auf Fixpoint gewandelte Zahlen; Imaginärteil=0)
|
||||
-- Die vom FFT IP-Core berechneten werden (Realteil und Imaginärteil) können direkt dem IP-Core für die FFT Magnitude Berechnung (fft_magnitude_calc) übergeben werden (dieser arbeitet auch in Fixpoint im gleichen Wertebereich)
|
||||
-- Das Ergebnis des FFT Magnitude Berechnung IP-Cores (fft_magnitude_calc) dann auf Floating Point wandeln (to_float)
|
||||
-- Diese Floating Point Zahlen dann wieder skalieren mit *16 bzw. *32 für den DC-Anteil um auf den ursprünglichen Wertebereich mit +-16 zu kommen (aus dem FFT IP-Core kommt der DC-Anteil / Index 0 um den Faktor 2 zu klein, deswegen dort *32).
|
||||
-- (In Floating Point können Sie *16 machen, wenn Sie den Exponenten der Floating Point Zahl um +4 vergrößern, *32 wenn dieser um +5 vergrößert wird, falls der Exponent ungleich Null ist)
|
||||
-- Die Ergebnisse liegen noch in der bit-reveserd order vor (FFT IP-Core arbeitet nicht in-place) und müssen deswegen noch auf die natural order gebracht werden (https://de.mathworks.com/help/dsp/ug/linear-and-bit-reversed-output-order.html)
|
||||
-- (z.B: ein Array verwenden, um die Werte zu sortieren)
|
||||
-- Dann das Ergebnis in den Ausgangsfifo speichern
|
||||
--
|
||||
-----------------------------------------------------------------------
|
||||
library ieee;
|
||||
@ -35,10 +22,10 @@ library work;
|
||||
entity fft is
|
||||
generic (
|
||||
|
||||
-- input data width of real/img part
|
||||
-- input data width of real/img part
|
||||
input_data_width : integer := 32;
|
||||
|
||||
-- output data width of real/img part
|
||||
-- output data width of real/img part
|
||||
output_data_width : integer := 32
|
||||
|
||||
);
|
||||
@ -48,10 +35,10 @@ entity fft is
|
||||
|
||||
task_start : in std_logic;
|
||||
task_state : out work.task.State;
|
||||
|
||||
|
||||
signal_read : out std_logic;
|
||||
signal_readdata : in std_logic_vector( 31 downto 0 );
|
||||
|
||||
|
||||
signal_write : out std_logic;
|
||||
signal_writedata : out std_logic_vector( 31 downto 0 )
|
||||
);
|
||||
@ -59,103 +46,12 @@ end entity fft;
|
||||
|
||||
architecture rtl of fft is
|
||||
|
||||
|
||||
-- Signale für Task State Machine
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
--signal index : integer range 0 to 2000;
|
||||
|
||||
-- component des Verilog IP-Cores fuer die FFT
|
||||
component fftmain is
|
||||
port(
|
||||
clock: in std_logic; -- Master Clock
|
||||
reset: in std_logic; -- Active High Asynchronous Reset
|
||||
di_en: in std_logic; -- Input Data Enable
|
||||
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
|
||||
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
|
||||
do_en: out std_logic; -- Output Data Enable
|
||||
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
|
||||
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
|
||||
);
|
||||
end component;
|
||||
|
||||
-- Signale Input skaliert
|
||||
signal fft_float_input : signed( 31 downto 0 );
|
||||
signal fft_float_scaled_input : signed( 31 downto 0 );
|
||||
|
||||
-- Signale fuer FFT-IP Core
|
||||
-- fft data input signal
|
||||
signal fft_input_data_enable: std_logic;
|
||||
signal data_in_re : std_logic_vector (input_data_width-1 downto 0);
|
||||
signal data_in_im : std_logic_vector (input_data_width-1 downto 0);
|
||||
-- fft output data
|
||||
signal fft_output_valid : std_logic;
|
||||
signal data_out_re : std_logic_vector (output_data_width-1 downto 0);
|
||||
signal data_out_im : std_logic_vector (output_data_width-1 downto 0);
|
||||
|
||||
-- Signale fuer Magnitude IP-Core
|
||||
signal fft_mag_calc_valid : std_logic;
|
||||
signal fft_mag_calc_result: std_logic_vector (output_data_width-1 downto 0);
|
||||
|
||||
-- Signale fuer Ergebnis skaliert
|
||||
signal data_out_mag_signed_float : signed (output_data_width-1 downto 0);
|
||||
signal fft_float_scaled : signed( 31 downto 0 );
|
||||
|
||||
-- Signale/Array um Ergebnisse der FFT in der natural order zu speichern
|
||||
|
||||
signal data_memory : work.reg32.RegArray( 0 to 1023 );
|
||||
signal index_reversed : std_logic_vector(9 downto 0);
|
||||
signal index_output_sv : std_logic_vector(9 downto 0);
|
||||
signal index_output : integer range 0 to 1023;
|
||||
|
||||
-- Signal um in den Write FIFO zu schreiben
|
||||
signal wr_fifo : std_logic;
|
||||
|
||||
begin
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Hier muss der Verilog FFT IP-Core instanziert werden
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
--u_fft : fftmain
|
||||
-- port map (
|
||||
-- clock => , -- system clock
|
||||
-- reset => , -- Active High Asynchronous Reset
|
||||
-- di_en => , -- Input Data Enable
|
||||
-- di_re => , -- Input Data (Real)
|
||||
-- di_im => , -- Input Data (Imag)
|
||||
-- do_en => , -- Output Data Enable
|
||||
-- do_re => , -- Output Data (Real)
|
||||
-- do_im => -- Output Data (Imag)
|
||||
-- );
|
||||
|
||||
fft_output_valid <= '0';
|
||||
data_out_re <= (others => '0');
|
||||
data_out_im <= (others => '0');
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Hier muss der VHDL Magnitue IP-COre instanziert werden
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
-- u_fft_mag_calc : entity work.fft_magnitude_calc
|
||||
-- port map (
|
||||
-- clk => , -- system clock
|
||||
-- reset => , -- Active High Asynchronous Reset
|
||||
-- input_valid => , -- Input Data Valid
|
||||
-- input_re => , -- Input Realteil in Fixpoint format
|
||||
-- input_im => , -- Input Imaginaerteil in Fixpoint format
|
||||
-- output_valid => , -- Output Data Valid
|
||||
-- output_magnitude => -- Magnitude Output in Fixpoint format
|
||||
-- );
|
||||
|
||||
fft_mag_calc_valid <= '1' when index = 0 else '0';
|
||||
fft_mag_calc_result <= (others => '0');
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Zustandsmaschine fuer die Taskabarbeitung (Uebergangsschaltnetz)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
task_state_transitions : process (all) is
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
case current_task_state is
|
||||
@ -164,7 +60,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = 2 ) then
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -174,157 +70,28 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Zustandsmaschine fuer die eigentliche Ablaufsteuerung fuer die FFT (Uebergangsschaltnetz)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
-- Hier soll Ihre Ablaufsteuerung fuer die FFT stehen
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Ausgangsschaltnetz/Zustandsspeicher fuer die Task und FFT Zustandsmaschine
|
||||
-----------------------------------------------------------------------------------------------
|
||||
sync : process ( clk, reset ) is
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
index <= 0;
|
||||
wr_fifo <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
wr_fifo <= '0';
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
when work.task.TASK_RUNNING =>
|
||||
-- Nur damit das Template durchlaueft bei index=0 wird das natural order array mit Nullen gefuellt
|
||||
-- Bei index=1 werden die 1024 Werte in den Ausgangsfifo geschrieben (Task done bei index=2)
|
||||
if ( index_output = work.task.STREAM_LEN - 1 ) then
|
||||
index <= index + 1;
|
||||
end if;
|
||||
if index = 1 then
|
||||
wr_fifo <= '1';
|
||||
end if;
|
||||
when work.task.TASK_DONE => null;
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
||||
end process sync;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
--
|
||||
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
|
||||
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
|
||||
-- und im naechsten Takt schon weiter verarbeitet werden können
|
||||
--
|
||||
-- Erforderliches Scaling:
|
||||
--
|
||||
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
|
||||
-- multiplication is a simple addition of the exponents.
|
||||
-- In the following calculation the inputs are scaled from FP in range +-16 to FP in range +-1
|
||||
-- This means an divsion through 16 -> exponent needs an addition of - 4
|
||||
--
|
||||
-- fft_float_input = gelesener Wert vom FIFO (floating point)
|
||||
-- fft_float_scaled_input = soll skalierter Wert vom FIFO seien (floating point)
|
||||
-- (Anm. Der FFT IP-Core braucht als Format Fix-Point -> noch eine weitere Wandlung erforderlich)
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
fft_float_input <= signed(signal_readdata);
|
||||
|
||||
fft_float_scaled_input <= fft_float_input; -- Der Eingang muss noch entsprechend skaliert werden
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
--
|
||||
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
|
||||
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
|
||||
-- und im naechsten Takt schon weiter verarbeitet werden können
|
||||
--
|
||||
-- Erforderliches Scaling:
|
||||
--
|
||||
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
|
||||
-- multiplication is a simple addition of the exponents.
|
||||
-- In the following calculation the inputs are scaled from FP in range +-1 to FP in range +-16
|
||||
-- the first frequency bin (DC-bin) needs a multiplication by two compared to the other frequency bins (the used fft ip-core divides the result of the first frequency bin by N instead of the correct N/2)
|
||||
-- This means an divsion through 16 is required for the first frequency bin (DC Part) -> exponent needs an addition of +4
|
||||
-- This means an divsion through 32 is required for the first frequency bin (DC Part) -> exponent needs an addition of +5
|
||||
--
|
||||
-- data_out_mag_signed_float = in float gewandelter Wert der Magnitude Berechnung
|
||||
-- fft_float_scaled = soll der skalierte float Wert der Magnitude seien
|
||||
-----------------------------------------------------------------------------------------------
|
||||
|
||||
data_out_mag_signed_float <= signed(to_float(fft_mag_calc_result));
|
||||
|
||||
fft_float_scaled <= data_out_mag_signed_float; -- Der Ausgang muss noch entsprechend skaliert werden
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Der FFT-IP Core liefert das Ergebnis nicht in der natuerlichen Reihenfolge deswegen muss eine
|
||||
-- Umordnung der Ausgangswerte erfolgen
|
||||
--
|
||||
-- index_output_sv = std_logic_vector des Integer Ausgangsindex
|
||||
-- index_reversed = der reversed Ausgangsindex (wird benoetigt fuer damit man die FFT Ergebnisse in die natuerliche Ordnung bringt
|
||||
--
|
||||
c_index_output_sv:
|
||||
index_output_sv <= std_logic_vector(to_unsigned(index_output, index_reversed'length));
|
||||
c_reversed_index:
|
||||
index_reversed <= index_output_sv(0) & index_output_sv(1) & index_output_sv(2) & index_output_sv(3) & index_output_sv(4) & index_output_sv(5) & index_output_sv(6) & index_output_sv(7) & index_output_sv(8) & index_output_sv(9);
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Prozess steuert das hochzaehlen des Ausgang Index
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_number_output_sample: process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
index_output <= 0;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
-- Ruecksetz Bedingung für index_output
|
||||
if index_output = 1023 then -- in diese IF-Bedingung ggf. noch den IDLE Zustand Ihrer FFT FSM einbringen
|
||||
index_output <= 0;
|
||||
-- index_output hochzaehlen um in natural order im array zu speichern
|
||||
elsif fft_mag_calc_valid = '1' then
|
||||
index_output <= index_output + 1;
|
||||
-- index_output hochzaehlen um Werte im Ausgangsfifo zu speichern
|
||||
elsif wr_fifo = '1' then
|
||||
index_output <= index_output + 1;
|
||||
end if;
|
||||
end if;
|
||||
end process p_number_output_sample;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Prozess speichert das skalierte Endergbenis iun der natural order
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_output2float_memory: process ( clk, reset) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
null;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
if fft_mag_calc_valid = '1' then
|
||||
data_memory(to_integer(unsigned(index_reversed))) <= std_logic_vector(fft_float_scaled);
|
||||
end if;
|
||||
end if;
|
||||
end process p_output2float_memory;
|
||||
|
||||
-----------------------------------------------------------------------------------------------
|
||||
-- Schreiben der berechneten Werte in den FIFO
|
||||
-----------------------------------------------------------------------------------------------
|
||||
p_output_fifo: process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
signal_writedata <= (others => '0');
|
||||
signal_write <= '0';
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
signal_write <= '0';
|
||||
if wr_fifo = '1' then
|
||||
signal_writedata <= data_memory(index_output);
|
||||
signal_write <= '1';
|
||||
end if;
|
||||
end if;
|
||||
end process p_output_fifo;
|
||||
|
||||
|
||||
-- Hier sollen die sonstigen benoetigten Anweisungen stehen
|
||||
task_state <= current_task_state;
|
||||
task_state <= current_task_state;
|
||||
|
||||
end architecture rtl;
|
||||
|
@ -25,6 +25,11 @@ architecture rtl of rand is
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
signal lfsr : std_logic_vector( 31 downto 0 );
|
||||
signal lfsr_next : std_logic_vector( 31 downto 0 );
|
||||
signal bitte : std_logic;
|
||||
signal exponent : std_logic_vector( 7 downto 0 );
|
||||
signal ieee754 : std_logic_vector( 31 downto 0 );
|
||||
|
||||
begin
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
@ -46,24 +51,39 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
exponent <= std_logic_vector(to_unsigned(128, 8) + unsigned(lfsr(23 downto 23))) when (lfsr(30) = '1')
|
||||
else std_logic_vector(to_unsigned(124, 8) + unsigned(lfsr(24 downto 23)));
|
||||
|
||||
ieee754 <= lfsr(31) & exponent(7 downto 0) & lfsr(22 downto 0);
|
||||
|
||||
bitte <= (lfsr(31) XOR lfsr(21) XOR lfsr(1));
|
||||
lfsr_next <= lfsr(30 downto 0) & bitte;
|
||||
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
index <= 0;
|
||||
-- alle Signale in der Reset Bedingung initialisieren
|
||||
lfsr <= seed;
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
|
||||
lfsr <= seed;
|
||||
when work.task.TASK_RUNNING =>
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( ieee754 );
|
||||
|
||||
lfsr <= lfsr_next;
|
||||
index <= index + 1;
|
||||
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
@ -29,8 +29,31 @@ architecture rtl of sine is
|
||||
signal current_task_state : work.task.State;
|
||||
signal next_task_state : work.task.State;
|
||||
signal index : integer range 0 to work.task.STREAM_LEN;
|
||||
signal index_run :integer range 0 to 2;
|
||||
signal data_valid : std_logic;
|
||||
signal busy : std_logic;
|
||||
signal result_valid : std_logic;
|
||||
signal angle : signed(31 downto 0);
|
||||
signal write_value : signed(31 downto 0);
|
||||
|
||||
begin
|
||||
-- Instanziierung der float_sine.vhd
|
||||
u_float_sine : entity work.float_sine
|
||||
generic map(
|
||||
ITERATIONS => 8
|
||||
)
|
||||
port map(
|
||||
clk => clk,
|
||||
reset => reset,
|
||||
|
||||
data_valid => data_valid,
|
||||
busy => busy,
|
||||
result_valid => result_valid,
|
||||
angle => angle,
|
||||
sine => write_value
|
||||
);
|
||||
|
||||
-- Zustandsautomat fuer die Zustandsswechsel
|
||||
task_state_transitions : process ( current_task_state, task_start, index ) is
|
||||
begin
|
||||
next_task_state <= current_task_state;
|
||||
@ -40,7 +63,7 @@ begin
|
||||
next_task_state <= work.task.TASK_RUNNING;
|
||||
end if;
|
||||
when work.task.TASK_RUNNING =>
|
||||
if ( index = work.task.STREAM_LEN - 1 ) then
|
||||
if ( index = work.task.STREAM_LEN ) then -- - 1 ) then
|
||||
next_task_state <= work.task.TASK_DONE;
|
||||
end if;
|
||||
when work.task.TASK_DONE =>
|
||||
@ -50,24 +73,49 @@ begin
|
||||
end case;
|
||||
end process task_state_transitions;
|
||||
|
||||
-- Zustandautomat fuer die Berechnung
|
||||
sync : process ( clk, reset ) is
|
||||
begin
|
||||
if ( reset = '1' ) then
|
||||
current_task_state <= work.task.TASK_IDLE;
|
||||
index <= 0;
|
||||
-- alle Signale in der Reset Bedingung initialisieren
|
||||
data_valid <= '0';
|
||||
signal_write <= '0';
|
||||
angle <= x"00000000";
|
||||
elsif ( rising_edge( clk ) ) then
|
||||
current_task_state <= next_task_state;
|
||||
case next_task_state is
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
when work.task.TASK_RUNNING =>
|
||||
index <= index + 1;
|
||||
signal_write <= '1';
|
||||
signal_writedata <= ( others => '0' );
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
-- idle
|
||||
when work.task.TASK_IDLE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
-- running
|
||||
when work.task.TASK_RUNNING =>
|
||||
case index_run is
|
||||
when 0 =>
|
||||
signal_write <= '0';
|
||||
angle <= angle + signed(step_size);--signed(phase)
|
||||
data_valid <= '1';
|
||||
|
||||
index_run <= index_run + 1;
|
||||
when 1 =>
|
||||
data_valid <= '0';
|
||||
if(result_valid = '1') then
|
||||
signal_write <= '1';
|
||||
signal_writedata <= std_logic_vector(write_value);
|
||||
|
||||
index_run <= index_run + 1;
|
||||
end if;
|
||||
when 2 =>
|
||||
signal_write <= '0';
|
||||
index_run <= 0;
|
||||
index <= index + 1;
|
||||
end case;
|
||||
-- done
|
||||
when work.task.TASK_DONE =>
|
||||
index <= 0;
|
||||
signal_write <= '0';
|
||||
end case;
|
||||
end if;
|
||||
end process sync;
|
||||
|
@ -2,10 +2,23 @@
|
||||
#include "system/data_channel.h"
|
||||
#include "system/float_word.h"
|
||||
|
||||
int task_add_run( void * task ) {
|
||||
int task_add_run( void * task )
|
||||
{
|
||||
add_config * config = (add_config * ) task;
|
||||
|
||||
// TODO
|
||||
// Nachfolgende Antworten Lesen den FIFO der ersten und zweiten Datenquelle aus
|
||||
// den jeweils gelesenen Wert mit 4 und speichern das Ergebnis in der Datensenke
|
||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i)
|
||||
{
|
||||
float a, b;
|
||||
data_channel_read( config->sources[0], (uint32_t *) & a );
|
||||
data_channel_read( config->sources[1], (uint32_t *) & b );
|
||||
|
||||
float_word c;
|
||||
c.value = a + b;
|
||||
data_channel_write( config->sink, c.word );
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -2,11 +2,43 @@
|
||||
#include "system/hardware_task.h"
|
||||
#include "system/data_channel.h"
|
||||
#include "system/float_word.h"
|
||||
#include <stdio.h>
|
||||
#include <system.h>
|
||||
|
||||
int task_rand_run( void * task ) {
|
||||
|
||||
// TODO
|
||||
// Nachfolgende Anweisungen Schreiben 1024 Mal den seed Wert in den FIFO für Rand
|
||||
rand_config * config = ( rand_config * ) task;
|
||||
float_word seed = {.value = config->seed};
|
||||
|
||||
return 0;
|
||||
uint32_t lfsr = seed.word;
|
||||
uint32_t bit = 0; // Must be 32-bit to allow bit << 31 later in the code
|
||||
|
||||
for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) {
|
||||
float_word res;
|
||||
|
||||
uint32_t sign = (lfsr >> 31) & 1;
|
||||
uint32_t exponent;
|
||||
uint32_t mantisse = lfsr & 0x7FFFFF;
|
||||
|
||||
if((lfsr >> 30) & 1) // MSB exponent
|
||||
{
|
||||
exponent = 128 + ((lfsr >> 23) & 1); // 128 to 129
|
||||
}
|
||||
else
|
||||
{
|
||||
exponent = 124 + ((lfsr >> 23) & 3); // 124 to 127
|
||||
}
|
||||
|
||||
uint32_t ieee754 = (sign << 31) | (exponent << 23) | mantisse;
|
||||
res.value = ieee754;
|
||||
|
||||
data_channel_write( config->base.sink, ieee754);
|
||||
|
||||
// fibonacci feedback polynomial: x^31 + x^21 + x^1 + 1
|
||||
bit = ((lfsr >> 31) ^ (lfsr >> 21) ^ (lfsr >> 1)) & 1;
|
||||
lfsr = (lfsr << 1) | bit;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1,10 +1,21 @@
|
||||
#include "system/task_sine.h"
|
||||
#include "system/data_channel.h"
|
||||
#include "system/float_word.h"
|
||||
#include <math.h>
|
||||
|
||||
int task_sine_run( void * data ) {
|
||||
|
||||
// TODO
|
||||
// Nachfolgende Anweisungen Schreiben 1024 Mal den Wert 4 in den FIFO für Sinus
|
||||
sine_config * task = ( sine_config * ) data;
|
||||
uint32_t data_channel_base = task->base.sink;
|
||||
data_channel_clear( data_channel_base );
|
||||
|
||||
return 0;
|
||||
for( uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++ ) {
|
||||
float_word res;
|
||||
res.value = task->amplitude * sin((2 * M_PI / task->samples_per_periode) * i + task->phase );
|
||||
|
||||
data_channel_write( data_channel_base, res.word );
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -11,8 +11,6 @@ verilog_srcs = \
|
||||
vhdl_srcs = \
|
||||
../../../hardware/system/reg32.vhd \
|
||||
../../../hardware/system/avalon_slave.vhd \
|
||||
../test_utility.vhd \
|
||||
../test_avalon_slave.vhd \
|
||||
../../hardware/test_data_channel.vhd \
|
||||
../../../hardware/system/avalon_slave_transitions.vhd \
|
||||
../../../hardware/system/task.vhd \
|
||||
|
@ -63,7 +63,7 @@ architecture test of test_task_fft is
|
||||
variable writedata_float : float32;
|
||||
variable writedata_real : real;
|
||||
variable expected_real : real;
|
||||
variable abs_err : real := 0.6;
|
||||
variable abs_err : real := 0.5e-1;
|
||||
variable result : data_array( 0 to work.task.STREAM_LEN - 1 );
|
||||
variable result_fft : data_array( 0 to work.task.STREAM_LEN - 1 );
|
||||
file data_file : text;
|
||||
@ -110,13 +110,11 @@ architecture test of test_task_fft is
|
||||
std.textio.write( data_file_fft, "]" & LF );
|
||||
file_close( data_file_fft );
|
||||
|
||||
index := 0;
|
||||
while index < STREAM_LEN loop
|
||||
writedata_float := to_float( result( index ) );
|
||||
writedata_real := to_real( writedata_float );
|
||||
expected_real := work.fft_data.expected( index );
|
||||
assert_near( writedata_real, expected_real, abs_err );
|
||||
index := index + 1;
|
||||
end loop;
|
||||
|
||||
file_open( data_file_fft_bit_reversed, "fft_out_bit_reversed.py", write_mode );
|
||||
|
@ -1,2 +1 @@
|
||||
add wave -position end sim:/test_task_fft/dut/*
|
||||
add wave -position end sim:/test_task_fft/dut/u_fft/*
|
||||
|
Loading…
x
Reference in New Issue
Block a user