123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- //----------------------------------------------------------------------
- // SdfUnit: Radix-2^2 Single-Path Delay Feedback Unit for N-Point FFT
- //----------------------------------------------------------------------
- module SdfUnit #(
- parameter N = 64, // Number of FFT Point
- parameter M = 64, // Twiddle Resolution
- parameter WIDTH = 16 // Data Bit Length
- )(
- input clock, // Master Clock
- input reset, // Active High Asynchronous Reset
- input di_en, // Input Data Enable
- input [WIDTH-1:0] di_re, // Input Data (Real)
- input [WIDTH-1:0] di_im, // Input Data (Imag)
- output do_en, // Output Data Enable
- output [WIDTH-1:0] do_re, // Output Data (Real)
- output [WIDTH-1:0] do_im // Output Data (Imag)
- );
-
- // log2 constant function
- function integer log2;
- input integer x;
- integer value;
- begin
- value = x-1;
- for (log2=0; value>0; log2=log2+1)
- value = value>>1;
- end
- endfunction
-
- localparam LOG_N = log2(N); // Bit Length of N
- localparam LOG_M = log2(M); // Bit Length of M
-
- //----------------------------------------------------------------------
- // Internal Regs and Nets
- //----------------------------------------------------------------------
- // 1st Butterfly
- reg [LOG_N-1:0] di_count; // Input Data Count
- wire bf1_bf; // Butterfly Add/Sub Enable
- wire[WIDTH-1:0] bf1_x0_re; // Data #0 to Butterfly (Real)
- wire[WIDTH-1:0] bf1_x0_im; // Data #0 to Butterfly (Imag)
- wire[WIDTH-1:0] bf1_x1_re; // Data #1 to Butterfly (Real)
- wire[WIDTH-1:0] bf1_x1_im; // Data #1 to Butterfly (Imag)
- wire[WIDTH-1:0] bf1_y0_re; // Data #0 from Butterfly (Real)
- wire[WIDTH-1:0] bf1_y0_im; // Data #0 from Butterfly (Imag)
- wire[WIDTH-1:0] bf1_y1_re; // Data #1 from Butterfly (Real)
- wire[WIDTH-1:0] bf1_y1_im; // Data #1 from Butterfly (Imag)
- wire[WIDTH-1:0] db1_di_re; // Data to DelayBuffer (Real)
- wire[WIDTH-1:0] db1_di_im; // Data to DelayBuffer (Imag)
- wire[WIDTH-1:0] db1_do_re; // Data from DelayBuffer (Real)
- wire[WIDTH-1:0] db1_do_im; // Data from DelayBuffer (Imag)
- wire[WIDTH-1:0] bf1_sp_re; // Single-Path Data Output (Real)
- wire[WIDTH-1:0] bf1_sp_im; // Single-Path Data Output (Imag)
- reg bf1_sp_en; // Single-Path Data Enable
- reg [LOG_N-1:0] bf1_count; // Single-Path Data Count
- wire bf1_start; // Single-Path Output Trigger
- wire bf1_end; // End of Single-Path Data
- wire bf1_mj; // Twiddle (-j) Enable
- reg [WIDTH-1:0] bf1_do_re; // 1st Butterfly Output Data (Real)
- reg [WIDTH-1:0] bf1_do_im; // 1st Butterfly Output Data (Imag)
-
- // 2nd Butterfly
- reg bf2_bf; // Butterfly Add/Sub Enable
- wire[WIDTH-1:0] bf2_x0_re; // Data #0 to Butterfly (Real)
- wire[WIDTH-1:0] bf2_x0_im; // Data #0 to Butterfly (Imag)
- wire[WIDTH-1:0] bf2_x1_re; // Data #1 to Butterfly (Real)
- wire[WIDTH-1:0] bf2_x1_im; // Data #1 to Butterfly (Imag)
- wire[WIDTH-1:0] bf2_y0_re; // Data #0 from Butterfly (Real)
- wire[WIDTH-1:0] bf2_y0_im; // Data #0 from Butterfly (Imag)
- wire[WIDTH-1:0] bf2_y1_re; // Data #1 from Butterfly (Real)
- wire[WIDTH-1:0] bf2_y1_im; // Data #1 from Butterfly (Imag)
- wire[WIDTH-1:0] db2_di_re; // Data to DelayBuffer (Real)
- wire[WIDTH-1:0] db2_di_im; // Data to DelayBuffer (Imag)
- wire[WIDTH-1:0] db2_do_re; // Data from DelayBuffer (Real)
- wire[WIDTH-1:0] db2_do_im; // Data from DelayBuffer (Imag)
- wire[WIDTH-1:0] bf2_sp_re; // Single-Path Data Output (Real)
- wire[WIDTH-1:0] bf2_sp_im; // Single-Path Data Output (Imag)
- reg bf2_sp_en; // Single-Path Data Enable
- reg [LOG_N-1:0] bf2_count; // Single-Path Data Count
- reg bf2_start; // Single-Path Output Trigger
- wire bf2_end; // End of Single-Path Data
- reg [WIDTH-1:0] bf2_do_re; // 2nd Butterfly Output Data (Real)
- reg [WIDTH-1:0] bf2_do_im; // 2nd Butterfly Output Data (Imag)
- reg bf2_do_en; // 2nd Butterfly Output Data Enable
-
- // Multiplication
- wire[1:0] tw_sel; // Twiddle Select (2n/n/3n)
- wire[LOG_N-3:0] tw_num; // Twiddle Number (n)
- wire[LOG_N-1:0] tw_addr; // Twiddle Table Address
- wire[WIDTH-1:0] tw_re; // Twiddle Factor (Real)
- wire[WIDTH-1:0] tw_im; // Twiddle Factor (Imag)
- reg mu_en; // Multiplication Enable
- wire[WIDTH-1:0] mu_a_re; // Multiplier Input (Real)
- wire[WIDTH-1:0] mu_a_im; // Multiplier Input (Imag)
- wire[WIDTH-1:0] mu_m_re; // Multiplier Output (Real)
- wire[WIDTH-1:0] mu_m_im; // Multiplier Output (Imag)
- reg [WIDTH-1:0] mu_do_re; // Multiplication Output Data (Real)
- reg [WIDTH-1:0] mu_do_im; // Multiplication Output Data (Imag)
- reg mu_do_en; // Multiplication Output Data Enable
-
- //----------------------------------------------------------------------
- // 1st Butterfly
- //----------------------------------------------------------------------
- always @(posedge clock or posedge reset) begin
- if (reset) begin
- di_count <= {LOG_N{1'b0}};
- end else begin
- di_count <= di_en ? (di_count + 1'b1) : {LOG_N{1'b0}};
- end
- end
- assign bf1_bf = di_count[LOG_M-1];
-
- // Set unknown value x for verification
- assign bf1_x0_re = bf1_bf ? db1_do_re : {WIDTH{1'bx}};
- assign bf1_x0_im = bf1_bf ? db1_do_im : {WIDTH{1'bx}};
- assign bf1_x1_re = bf1_bf ? di_re : {WIDTH{1'bx}};
- assign bf1_x1_im = bf1_bf ? di_im : {WIDTH{1'bx}};
-
- Butterfly #(.WIDTH(WIDTH),.RH(0)) BF1 (
- .x0_re (bf1_x0_re ), // i
- .x0_im (bf1_x0_im ), // i
- .x1_re (bf1_x1_re ), // i
- .x1_im (bf1_x1_im ), // i
- .y0_re (bf1_y0_re ), // o
- .y0_im (bf1_y0_im ), // o
- .y1_re (bf1_y1_re ), // o
- .y1_im (bf1_y1_im ) // o
- );
-
- DelayBuffer #(.DEPTH(2**(LOG_M-1)),.WIDTH(WIDTH)) DB1 (
- .clock (clock ), // i
- .di_re (db1_di_re ), // i
- .di_im (db1_di_im ), // i
- .do_re (db1_do_re ), // o
- .do_im (db1_do_im ) // o
- );
-
- assign db1_di_re = bf1_bf ? bf1_y1_re : di_re;
- assign db1_di_im = bf1_bf ? bf1_y1_im : di_im;
- assign bf1_sp_re = bf1_bf ? bf1_y0_re : bf1_mj ? db1_do_im : db1_do_re;
- assign bf1_sp_im = bf1_bf ? bf1_y0_im : bf1_mj ? -db1_do_re : db1_do_im;
-
- always @(posedge clock or posedge reset) begin
- if (reset) begin
- bf1_sp_en <= 1'b0;
- bf1_count <= {LOG_N{1'b0}};
- end else begin
- bf1_sp_en <= bf1_start ? 1'b1 : bf1_end ? 1'b0 : bf1_sp_en;
- bf1_count <= bf1_sp_en ? (bf1_count + 1'b1) : {LOG_N{1'b0}};
- end
- end
- assign bf1_start = (di_count == (2**(LOG_M-1)-1));
- assign bf1_end = (bf1_count == (2**LOG_N-1));
- assign bf1_mj = (bf1_count[LOG_M-1:LOG_M-2] == 2'd3);
-
- always @(posedge clock) begin
- bf1_do_re <= bf1_sp_re;
- bf1_do_im <= bf1_sp_im;
- end
-
- //----------------------------------------------------------------------
- // 2nd Butterfly
- //----------------------------------------------------------------------
- always @(posedge clock) begin
- bf2_bf <= bf1_count[LOG_M-2];
- end
-
- // Set unknown value x for verification
- assign bf2_x0_re = bf2_bf ? db2_do_re : {WIDTH{1'bx}};
- assign bf2_x0_im = bf2_bf ? db2_do_im : {WIDTH{1'bx}};
- assign bf2_x1_re = bf2_bf ? bf1_do_re : {WIDTH{1'bx}};
- assign bf2_x1_im = bf2_bf ? bf1_do_im : {WIDTH{1'bx}};
-
- // Negative bias occurs when RH=0 and positive bias occurs when RH=1.
- // Using both alternately reduces the overall rounding error.
- Butterfly #(.WIDTH(WIDTH),.RH(1)) BF2 (
- .x0_re (bf2_x0_re ), // i
- .x0_im (bf2_x0_im ), // i
- .x1_re (bf2_x1_re ), // i
- .x1_im (bf2_x1_im ), // i
- .y0_re (bf2_y0_re ), // o
- .y0_im (bf2_y0_im ), // o
- .y1_re (bf2_y1_re ), // o
- .y1_im (bf2_y1_im ) // o
- );
-
- DelayBuffer #(.DEPTH(2**(LOG_M-2)),.WIDTH(WIDTH)) DB2 (
- .clock (clock ), // i
- .di_re (db2_di_re ), // i
- .di_im (db2_di_im ), // i
- .do_re (db2_do_re ), // o
- .do_im (db2_do_im ) // o
- );
-
- assign db2_di_re = bf2_bf ? bf2_y1_re : bf1_do_re;
- assign db2_di_im = bf2_bf ? bf2_y1_im : bf1_do_im;
- assign bf2_sp_re = bf2_bf ? bf2_y0_re : db2_do_re;
- assign bf2_sp_im = bf2_bf ? bf2_y0_im : db2_do_im;
-
- always @(posedge clock or posedge reset) begin
- if (reset) begin
- bf2_sp_en <= 1'b0;
- bf2_count <= {LOG_N{1'b0}};
- end else begin
- bf2_sp_en <= bf2_start ? 1'b1 : bf2_end ? 1'b0 : bf2_sp_en;
- bf2_count <= bf2_sp_en ? (bf2_count + 1'b1) : {LOG_N{1'b0}};
- end
- end
-
- always @(posedge clock) begin
- bf2_start <= (bf1_count == (2**(LOG_M-2)-1)) & bf1_sp_en;
- end
- assign bf2_end = (bf2_count == (2**LOG_N-1));
-
- always @(posedge clock) begin
- bf2_do_re <= bf2_sp_re;
- bf2_do_im <= bf2_sp_im;
- end
-
- always @(posedge clock or posedge reset) begin
- if (reset) begin
- bf2_do_en <= 1'b0;
- end else begin
- bf2_do_en <= bf2_sp_en;
- end
- end
-
- //----------------------------------------------------------------------
- // Multiplication
- //----------------------------------------------------------------------
- assign tw_sel[1] = bf2_count[LOG_M-2];
- assign tw_sel[0] = bf2_count[LOG_M-1];
- assign tw_num = bf2_count << (LOG_N-LOG_M);
- assign tw_addr = tw_num * tw_sel;
-
- Twiddle TW (
- .clock (clock ), // i
- .addr (tw_addr), // i
- .tw_re (tw_re ), // o
- .tw_im (tw_im ) // o
- );
-
- // Multiplication is bypassed when twiddle address is 0.
- always @(posedge clock) begin
- mu_en <= (tw_addr != {LOG_N{1'b0}});
- end
- // Set unknown value x for verification
- assign mu_a_re = mu_en ? bf2_do_re : {WIDTH{1'bx}};
- assign mu_a_im = mu_en ? bf2_do_im : {WIDTH{1'bx}};
-
- Multiply #(.WIDTH(WIDTH)) MU (
- .a_re (mu_a_re), // i
- .a_im (mu_a_im), // i
- .b_re (tw_re ), // i
- .b_im (tw_im ), // i
- .m_re (mu_m_re), // o
- .m_im (mu_m_im) // o
- );
-
- always @(posedge clock) begin
- mu_do_re <= mu_en ? mu_m_re : bf2_do_re;
- mu_do_im <= mu_en ? mu_m_im : bf2_do_im;
- end
-
- always @(posedge clock or posedge reset) begin
- if (reset) begin
- mu_do_en <= 1'b0;
- end else begin
- mu_do_en <= bf2_do_en;
- end
- end
-
- // No multiplication required at final stage
- assign do_en = (LOG_M == 2) ? bf2_do_en : mu_do_en;
- assign do_re = (LOG_M == 2) ? bf2_do_re : mu_do_re;
- assign do_im = (LOG_M == 2) ? bf2_do_im : mu_do_im;
-
- endmodule
|