12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- #include "system/task_fft.h"
- #include "system/data_channel.h"
- #include "system/Complex.h"
- #include "system/float_word.h"
- #include <math.h>
- #include <complex.h>
- #include <stdio.h>
-
- void fft_radix4(complex float *x) {
- int n = DATA_CHANNEL_DEPTH;
- int stages = log(n) / log(4); // Anzahl der FFT-Stufen
-
- // Bit-Reversal-Rearrangement (Umordnung der Daten für FFT)
- for (int i = 0; i < n; i++) {
- int rev = 0, num = i;
- for (int bit = 0; bit < stages; bit++) {
- rev = rev * 4 + (num % 4);
- //printf("i: %d, rev: %d\n", i, rev);
- num /= 4;
- }
- if (i < rev) {
- complex float temp = x[i];
- x[i] = x[rev];
- x[rev] = temp;
- }
- }
-
- // Radix-4 Butterfly-Berechnung
- for (int s = 1; s <= stages; s++) {
- int m = pow(4, s); // Gruppengröße (4^s)
- int quarter_m = m / 4; // Viertel der Gruppengröße
- float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit
- //printf("Stage: %d, m: %d, theta: %f\n", s, m, theta);
-
- for (int k = 0; k < n; k += m) { // Iteration über Gruppen
- for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe
- // Wurzeln der Einheit
- complex float w0 = 1.0f; // Wurzel für j = 0
- complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1
- complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2
- complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3
-
- // Lade die Werte aus der Gruppe
- complex float t0 = x[k + j];
- complex float t1 = x[k + j + quarter_m] * w1;
- complex float t2 = x[k + j + 2 * quarter_m] * w2;
- complex float t3 = x[k + j + 3 * quarter_m] * w3;
- //printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3));
-
- //printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3));
- // Butterfly-Operationen
- x[k + j] = t0 + t1 + t2 + t3;
- x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2);
- x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3;
- x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2);
- //printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m]));
- }
- }
- }
- }
-
-
-
- int task_fft_run(void *task) {
-
- fft_config *config = (fft_config *)task;
- complex float x[DATA_CHANNEL_DEPTH];
- float c[DATA_CHANNEL_DEPTH];
-
- for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
- float a;
- data_channel_read(config->base.sources[0], (uint32_t *) &a);
- x[i] = a;
- //printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
- }
-
- fft_radix4(x);
-
- for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
- //printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
- c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag
- if (i == 0)
- c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung
- else
- c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung
- printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]);
-
- float_word output;
- output.value = c[i];
-
- data_channel_write(config->base.sink, output.word);
- }
-
- return 0;
- }
-
|