This commit is contained in:
Nick Haller 2025-11-14 17:25:07 +01:00
parent 44f0bfc16d
commit 7837be1c3e

View File

@ -9,41 +9,60 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
FILE *file = fopen(path, "wb");
if (file == NULL) {
if (!file) {
perror("Fehler beim Erstellen der Testdatei");
exit(EXIT_FAILURE);
}
// Dateikopf speichern
const char *fileTag = "info2_neural_network_file_format";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
// File header
const char *fileTag = "__info2_neural_network_file_format__";
fwrite(fileTag, strlen(fileTag), 1, file);
// Dimensionen der Eingabe und Ausgabe für den ersten Layer speichern
unsigned int inputDimension = nn.layers[0].weights.rows; // Eingabedimension ist die Anzahl der Eingabeneuronen im ersten Layer
unsigned int outputDimension = nn.layers[0].weights.cols; // Ausgabedimension ist die Anzahl der Ausgabeneuronen im ersten Layer
fwrite(&inputDimension, sizeof(unsigned int), 1, file);
fwrite(&outputDimension, sizeof(unsigned int), 1, file);
// Alle Layer speichern
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
// Layer-Dimensionen speichern
inputDimension = nn.layers[i].weights.rows;
outputDimension = nn.layers[i].weights.cols;
fwrite(&inputDimension, sizeof(unsigned int), 1, file);
fwrite(&outputDimension, sizeof(unsigned int), 1, file);
// Gewichte speichern
fwrite(&nn.layers[i].weights.rows, sizeof(unsigned int), 1, file);
fwrite(&nn.layers[i].weights.cols, sizeof(unsigned int), 1, file);
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), nn.layers[i].weights.rows * nn.layers[i].weights.cols, file);
// Biases speichern
fwrite(&nn.layers[i].biases.rows, sizeof(unsigned int), 1, file);
fwrite(&nn.layers[i].biases.cols, sizeof(unsigned int), 1, file);
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), nn.layers[i].biases.rows * nn.layers[i].biases.cols, file);
if (nn.numberOfLayers == 0)
{
unsigned int zero = 0;
fwrite(&zero, sizeof(unsigned int), 1, file);
fclose(file);
return;
}
// first layer dimension
unsigned int in = nn.layers[0].weights.cols;
unsigned int out = nn.layers[0].weights.rows;
fwrite(&in, sizeof(unsigned int), 1, file);
fwrite(&out, sizeof(unsigned int), 1, file);
// do all layers
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *L = &nn.layers[i];
// Write weights matrix
fwrite(L->weights.buffer,
sizeof(MatrixType),
L->weights.rows * L->weights.cols,
file);
// Write biases matrix
fwrite(L->biases.buffer,
sizeof(MatrixType),
L->biases.rows * L->biases.cols,
file);
// After layer i, write dimension of next layer
if (i + 1 < nn.numberOfLayers)
{
unsigned int nextOut = nn.layers[i+1].weights.rows;
fwrite(&nextOut, sizeof(unsigned int), 1, file);
}
}
// --- 5. Write terminating zero ---
unsigned int zero = 0;
fwrite(&zero, sizeof(unsigned int), 1, file);
fclose(file);
}