Smart-Home am Beispiel der Präsenzerkennung im Raum Projektarbeit Lennart Heimbs, Johannes Krug, Sebastian Dohle und Kevin Holzschuh bei Prof. Oliver Hofmann SS2019
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

MobileNetSSD_deploy.prototxt 29KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. name: "MobileNet-SSD"
  2. input: "data"
  3. input_shape {
  4. dim: 1
  5. dim: 3
  6. dim: 300
  7. dim: 300
  8. }
  9. layer {
  10. name: "conv0"
  11. type: "Convolution"
  12. bottom: "data"
  13. top: "conv0"
  14. param {
  15. lr_mult: 1.0
  16. decay_mult: 1.0
  17. }
  18. param {
  19. lr_mult: 2.0
  20. decay_mult: 0.0
  21. }
  22. convolution_param {
  23. num_output: 32
  24. pad: 1
  25. kernel_size: 3
  26. stride: 2
  27. weight_filler {
  28. type: "msra"
  29. }
  30. bias_filler {
  31. type: "constant"
  32. value: 0.0
  33. }
  34. }
  35. }
  36. layer {
  37. name: "conv0/relu"
  38. type: "ReLU"
  39. bottom: "conv0"
  40. top: "conv0"
  41. }
  42. layer {
  43. name: "conv1/dw"
  44. type: "Convolution"
  45. bottom: "conv0"
  46. top: "conv1/dw"
  47. param {
  48. lr_mult: 1.0
  49. decay_mult: 1.0
  50. }
  51. param {
  52. lr_mult: 2.0
  53. decay_mult: 0.0
  54. }
  55. convolution_param {
  56. num_output: 32
  57. pad: 1
  58. kernel_size: 3
  59. group: 32
  60. engine: CAFFE
  61. weight_filler {
  62. type: "msra"
  63. }
  64. bias_filler {
  65. type: "constant"
  66. value: 0.0
  67. }
  68. }
  69. }
  70. layer {
  71. name: "conv1/dw/relu"
  72. type: "ReLU"
  73. bottom: "conv1/dw"
  74. top: "conv1/dw"
  75. }
  76. layer {
  77. name: "conv1"
  78. type: "Convolution"
  79. bottom: "conv1/dw"
  80. top: "conv1"
  81. param {
  82. lr_mult: 1.0
  83. decay_mult: 1.0
  84. }
  85. param {
  86. lr_mult: 2.0
  87. decay_mult: 0.0
  88. }
  89. convolution_param {
  90. num_output: 64
  91. kernel_size: 1
  92. weight_filler {
  93. type: "msra"
  94. }
  95. bias_filler {
  96. type: "constant"
  97. value: 0.0
  98. }
  99. }
  100. }
  101. layer {
  102. name: "conv1/relu"
  103. type: "ReLU"
  104. bottom: "conv1"
  105. top: "conv1"
  106. }
  107. layer {
  108. name: "conv2/dw"
  109. type: "Convolution"
  110. bottom: "conv1"
  111. top: "conv2/dw"
  112. param {
  113. lr_mult: 1.0
  114. decay_mult: 1.0
  115. }
  116. param {
  117. lr_mult: 2.0
  118. decay_mult: 0.0
  119. }
  120. convolution_param {
  121. num_output: 64
  122. pad: 1
  123. kernel_size: 3
  124. stride: 2
  125. group: 64
  126. engine: CAFFE
  127. weight_filler {
  128. type: "msra"
  129. }
  130. bias_filler {
  131. type: "constant"
  132. value: 0.0
  133. }
  134. }
  135. }
  136. layer {
  137. name: "conv2/dw/relu"
  138. type: "ReLU"
  139. bottom: "conv2/dw"
  140. top: "conv2/dw"
  141. }
  142. layer {
  143. name: "conv2"
  144. type: "Convolution"
  145. bottom: "conv2/dw"
  146. top: "conv2"
  147. param {
  148. lr_mult: 1.0
  149. decay_mult: 1.0
  150. }
  151. param {
  152. lr_mult: 2.0
  153. decay_mult: 0.0
  154. }
  155. convolution_param {
  156. num_output: 128
  157. kernel_size: 1
  158. weight_filler {
  159. type: "msra"
  160. }
  161. bias_filler {
  162. type: "constant"
  163. value: 0.0
  164. }
  165. }
  166. }
  167. layer {
  168. name: "conv2/relu"
  169. type: "ReLU"
  170. bottom: "conv2"
  171. top: "conv2"
  172. }
  173. layer {
  174. name: "conv3/dw"
  175. type: "Convolution"
  176. bottom: "conv2"
  177. top: "conv3/dw"
  178. param {
  179. lr_mult: 1.0
  180. decay_mult: 1.0
  181. }
  182. param {
  183. lr_mult: 2.0
  184. decay_mult: 0.0
  185. }
  186. convolution_param {
  187. num_output: 128
  188. pad: 1
  189. kernel_size: 3
  190. group: 128
  191. engine: CAFFE
  192. weight_filler {
  193. type: "msra"
  194. }
  195. bias_filler {
  196. type: "constant"
  197. value: 0.0
  198. }
  199. }
  200. }
  201. layer {
  202. name: "conv3/dw/relu"
  203. type: "ReLU"
  204. bottom: "conv3/dw"
  205. top: "conv3/dw"
  206. }
  207. layer {
  208. name: "conv3"
  209. type: "Convolution"
  210. bottom: "conv3/dw"
  211. top: "conv3"
  212. param {
  213. lr_mult: 1.0
  214. decay_mult: 1.0
  215. }
  216. param {
  217. lr_mult: 2.0
  218. decay_mult: 0.0
  219. }
  220. convolution_param {
  221. num_output: 128
  222. kernel_size: 1
  223. weight_filler {
  224. type: "msra"
  225. }
  226. bias_filler {
  227. type: "constant"
  228. value: 0.0
  229. }
  230. }
  231. }
  232. layer {
  233. name: "conv3/relu"
  234. type: "ReLU"
  235. bottom: "conv3"
  236. top: "conv3"
  237. }
  238. layer {
  239. name: "conv4/dw"
  240. type: "Convolution"
  241. bottom: "conv3"
  242. top: "conv4/dw"
  243. param {
  244. lr_mult: 1.0
  245. decay_mult: 1.0
  246. }
  247. param {
  248. lr_mult: 2.0
  249. decay_mult: 0.0
  250. }
  251. convolution_param {
  252. num_output: 128
  253. pad: 1
  254. kernel_size: 3
  255. stride: 2
  256. group: 128
  257. engine: CAFFE
  258. weight_filler {
  259. type: "msra"
  260. }
  261. bias_filler {
  262. type: "constant"
  263. value: 0.0
  264. }
  265. }
  266. }
  267. layer {
  268. name: "conv4/dw/relu"
  269. type: "ReLU"
  270. bottom: "conv4/dw"
  271. top: "conv4/dw"
  272. }
  273. layer {
  274. name: "conv4"
  275. type: "Convolution"
  276. bottom: "conv4/dw"
  277. top: "conv4"
  278. param {
  279. lr_mult: 1.0
  280. decay_mult: 1.0
  281. }
  282. param {
  283. lr_mult: 2.0
  284. decay_mult: 0.0
  285. }
  286. convolution_param {
  287. num_output: 256
  288. kernel_size: 1
  289. weight_filler {
  290. type: "msra"
  291. }
  292. bias_filler {
  293. type: "constant"
  294. value: 0.0
  295. }
  296. }
  297. }
  298. layer {
  299. name: "conv4/relu"
  300. type: "ReLU"
  301. bottom: "conv4"
  302. top: "conv4"
  303. }
  304. layer {
  305. name: "conv5/dw"
  306. type: "Convolution"
  307. bottom: "conv4"
  308. top: "conv5/dw"
  309. param {
  310. lr_mult: 1.0
  311. decay_mult: 1.0
  312. }
  313. param {
  314. lr_mult: 2.0
  315. decay_mult: 0.0
  316. }
  317. convolution_param {
  318. num_output: 256
  319. pad: 1
  320. kernel_size: 3
  321. group: 256
  322. engine: CAFFE
  323. weight_filler {
  324. type: "msra"
  325. }
  326. bias_filler {
  327. type: "constant"
  328. value: 0.0
  329. }
  330. }
  331. }
  332. layer {
  333. name: "conv5/dw/relu"
  334. type: "ReLU"
  335. bottom: "conv5/dw"
  336. top: "conv5/dw"
  337. }
  338. layer {
  339. name: "conv5"
  340. type: "Convolution"
  341. bottom: "conv5/dw"
  342. top: "conv5"
  343. param {
  344. lr_mult: 1.0
  345. decay_mult: 1.0
  346. }
  347. param {
  348. lr_mult: 2.0
  349. decay_mult: 0.0
  350. }
  351. convolution_param {
  352. num_output: 256
  353. kernel_size: 1
  354. weight_filler {
  355. type: "msra"
  356. }
  357. bias_filler {
  358. type: "constant"
  359. value: 0.0
  360. }
  361. }
  362. }
  363. layer {
  364. name: "conv5/relu"
  365. type: "ReLU"
  366. bottom: "conv5"
  367. top: "conv5"
  368. }
  369. layer {
  370. name: "conv6/dw"
  371. type: "Convolution"
  372. bottom: "conv5"
  373. top: "conv6/dw"
  374. param {
  375. lr_mult: 1.0
  376. decay_mult: 1.0
  377. }
  378. param {
  379. lr_mult: 2.0
  380. decay_mult: 0.0
  381. }
  382. convolution_param {
  383. num_output: 256
  384. pad: 1
  385. kernel_size: 3
  386. stride: 2
  387. group: 256
  388. engine: CAFFE
  389. weight_filler {
  390. type: "msra"
  391. }
  392. bias_filler {
  393. type: "constant"
  394. value: 0.0
  395. }
  396. }
  397. }
  398. layer {
  399. name: "conv6/dw/relu"
  400. type: "ReLU"
  401. bottom: "conv6/dw"
  402. top: "conv6/dw"
  403. }
  404. layer {
  405. name: "conv6"
  406. type: "Convolution"
  407. bottom: "conv6/dw"
  408. top: "conv6"
  409. param {
  410. lr_mult: 1.0
  411. decay_mult: 1.0
  412. }
  413. param {
  414. lr_mult: 2.0
  415. decay_mult: 0.0
  416. }
  417. convolution_param {
  418. num_output: 512
  419. kernel_size: 1
  420. weight_filler {
  421. type: "msra"
  422. }
  423. bias_filler {
  424. type: "constant"
  425. value: 0.0
  426. }
  427. }
  428. }
  429. layer {
  430. name: "conv6/relu"
  431. type: "ReLU"
  432. bottom: "conv6"
  433. top: "conv6"
  434. }
  435. layer {
  436. name: "conv7/dw"
  437. type: "Convolution"
  438. bottom: "conv6"
  439. top: "conv7/dw"
  440. param {
  441. lr_mult: 1.0
  442. decay_mult: 1.0
  443. }
  444. param {
  445. lr_mult: 2.0
  446. decay_mult: 0.0
  447. }
  448. convolution_param {
  449. num_output: 512
  450. pad: 1
  451. kernel_size: 3
  452. group: 512
  453. engine: CAFFE
  454. weight_filler {
  455. type: "msra"
  456. }
  457. bias_filler {
  458. type: "constant"
  459. value: 0.0
  460. }
  461. }
  462. }
  463. layer {
  464. name: "conv7/dw/relu"
  465. type: "ReLU"
  466. bottom: "conv7/dw"
  467. top: "conv7/dw"
  468. }
  469. layer {
  470. name: "conv7"
  471. type: "Convolution"
  472. bottom: "conv7/dw"
  473. top: "conv7"
  474. param {
  475. lr_mult: 1.0
  476. decay_mult: 1.0
  477. }
  478. param {
  479. lr_mult: 2.0
  480. decay_mult: 0.0
  481. }
  482. convolution_param {
  483. num_output: 512
  484. kernel_size: 1
  485. weight_filler {
  486. type: "msra"
  487. }
  488. bias_filler {
  489. type: "constant"
  490. value: 0.0
  491. }
  492. }
  493. }
  494. layer {
  495. name: "conv7/relu"
  496. type: "ReLU"
  497. bottom: "conv7"
  498. top: "conv7"
  499. }
  500. layer {
  501. name: "conv8/dw"
  502. type: "Convolution"
  503. bottom: "conv7"
  504. top: "conv8/dw"
  505. param {
  506. lr_mult: 1.0
  507. decay_mult: 1.0
  508. }
  509. param {
  510. lr_mult: 2.0
  511. decay_mult: 0.0
  512. }
  513. convolution_param {
  514. num_output: 512
  515. pad: 1
  516. kernel_size: 3
  517. group: 512
  518. engine: CAFFE
  519. weight_filler {
  520. type: "msra"
  521. }
  522. bias_filler {
  523. type: "constant"
  524. value: 0.0
  525. }
  526. }
  527. }
  528. layer {
  529. name: "conv8/dw/relu"
  530. type: "ReLU"
  531. bottom: "conv8/dw"
  532. top: "conv8/dw"
  533. }
  534. layer {
  535. name: "conv8"
  536. type: "Convolution"
  537. bottom: "conv8/dw"
  538. top: "conv8"
  539. param {
  540. lr_mult: 1.0
  541. decay_mult: 1.0
  542. }
  543. param {
  544. lr_mult: 2.0
  545. decay_mult: 0.0
  546. }
  547. convolution_param {
  548. num_output: 512
  549. kernel_size: 1
  550. weight_filler {
  551. type: "msra"
  552. }
  553. bias_filler {
  554. type: "constant"
  555. value: 0.0
  556. }
  557. }
  558. }
  559. layer {
  560. name: "conv8/relu"
  561. type: "ReLU"
  562. bottom: "conv8"
  563. top: "conv8"
  564. }
  565. layer {
  566. name: "conv9/dw"
  567. type: "Convolution"
  568. bottom: "conv8"
  569. top: "conv9/dw"
  570. param {
  571. lr_mult: 1.0
  572. decay_mult: 1.0
  573. }
  574. param {
  575. lr_mult: 2.0
  576. decay_mult: 0.0
  577. }
  578. convolution_param {
  579. num_output: 512
  580. pad: 1
  581. kernel_size: 3
  582. group: 512
  583. engine: CAFFE
  584. weight_filler {
  585. type: "msra"
  586. }
  587. bias_filler {
  588. type: "constant"
  589. value: 0.0
  590. }
  591. }
  592. }
  593. layer {
  594. name: "conv9/dw/relu"
  595. type: "ReLU"
  596. bottom: "conv9/dw"
  597. top: "conv9/dw"
  598. }
  599. layer {
  600. name: "conv9"
  601. type: "Convolution"
  602. bottom: "conv9/dw"
  603. top: "conv9"
  604. param {
  605. lr_mult: 1.0
  606. decay_mult: 1.0
  607. }
  608. param {
  609. lr_mult: 2.0
  610. decay_mult: 0.0
  611. }
  612. convolution_param {
  613. num_output: 512
  614. kernel_size: 1
  615. weight_filler {
  616. type: "msra"
  617. }
  618. bias_filler {
  619. type: "constant"
  620. value: 0.0
  621. }
  622. }
  623. }
  624. layer {
  625. name: "conv9/relu"
  626. type: "ReLU"
  627. bottom: "conv9"
  628. top: "conv9"
  629. }
  630. layer {
  631. name: "conv10/dw"
  632. type: "Convolution"
  633. bottom: "conv9"
  634. top: "conv10/dw"
  635. param {
  636. lr_mult: 1.0
  637. decay_mult: 1.0
  638. }
  639. param {
  640. lr_mult: 2.0
  641. decay_mult: 0.0
  642. }
  643. convolution_param {
  644. num_output: 512
  645. pad: 1
  646. kernel_size: 3
  647. group: 512
  648. engine: CAFFE
  649. weight_filler {
  650. type: "msra"
  651. }
  652. bias_filler {
  653. type: "constant"
  654. value: 0.0
  655. }
  656. }
  657. }
  658. layer {
  659. name: "conv10/dw/relu"
  660. type: "ReLU"
  661. bottom: "conv10/dw"
  662. top: "conv10/dw"
  663. }
  664. layer {
  665. name: "conv10"
  666. type: "Convolution"
  667. bottom: "conv10/dw"
  668. top: "conv10"
  669. param {
  670. lr_mult: 1.0
  671. decay_mult: 1.0
  672. }
  673. param {
  674. lr_mult: 2.0
  675. decay_mult: 0.0
  676. }
  677. convolution_param {
  678. num_output: 512
  679. kernel_size: 1
  680. weight_filler {
  681. type: "msra"
  682. }
  683. bias_filler {
  684. type: "constant"
  685. value: 0.0
  686. }
  687. }
  688. }
  689. layer {
  690. name: "conv10/relu"
  691. type: "ReLU"
  692. bottom: "conv10"
  693. top: "conv10"
  694. }
  695. layer {
  696. name: "conv11/dw"
  697. type: "Convolution"
  698. bottom: "conv10"
  699. top: "conv11/dw"
  700. param {
  701. lr_mult: 1.0
  702. decay_mult: 1.0
  703. }
  704. param {
  705. lr_mult: 2.0
  706. decay_mult: 0.0
  707. }
  708. convolution_param {
  709. num_output: 512
  710. pad: 1
  711. kernel_size: 3
  712. group: 512
  713. engine: CAFFE
  714. weight_filler {
  715. type: "msra"
  716. }
  717. bias_filler {
  718. type: "constant"
  719. value: 0.0
  720. }
  721. }
  722. }
  723. layer {
  724. name: "conv11/dw/relu"
  725. type: "ReLU"
  726. bottom: "conv11/dw"
  727. top: "conv11/dw"
  728. }
  729. layer {
  730. name: "conv11"
  731. type: "Convolution"
  732. bottom: "conv11/dw"
  733. top: "conv11"
  734. param {
  735. lr_mult: 1.0
  736. decay_mult: 1.0
  737. }
  738. param {
  739. lr_mult: 2.0
  740. decay_mult: 0.0
  741. }
  742. convolution_param {
  743. num_output: 512
  744. kernel_size: 1
  745. weight_filler {
  746. type: "msra"
  747. }
  748. bias_filler {
  749. type: "constant"
  750. value: 0.0
  751. }
  752. }
  753. }
  754. layer {
  755. name: "conv11/relu"
  756. type: "ReLU"
  757. bottom: "conv11"
  758. top: "conv11"
  759. }
  760. layer {
  761. name: "conv12/dw"
  762. type: "Convolution"
  763. bottom: "conv11"
  764. top: "conv12/dw"
  765. param {
  766. lr_mult: 1.0
  767. decay_mult: 1.0
  768. }
  769. param {
  770. lr_mult: 2.0
  771. decay_mult: 0.0
  772. }
  773. convolution_param {
  774. num_output: 512
  775. pad: 1
  776. kernel_size: 3
  777. stride: 2
  778. group: 512
  779. engine: CAFFE
  780. weight_filler {
  781. type: "msra"
  782. }
  783. bias_filler {
  784. type: "constant"
  785. value: 0.0
  786. }
  787. }
  788. }
  789. layer {
  790. name: "conv12/dw/relu"
  791. type: "ReLU"
  792. bottom: "conv12/dw"
  793. top: "conv12/dw"
  794. }
  795. layer {
  796. name: "conv12"
  797. type: "Convolution"
  798. bottom: "conv12/dw"
  799. top: "conv12"
  800. param {
  801. lr_mult: 1.0
  802. decay_mult: 1.0
  803. }
  804. param {
  805. lr_mult: 2.0
  806. decay_mult: 0.0
  807. }
  808. convolution_param {
  809. num_output: 1024
  810. kernel_size: 1
  811. weight_filler {
  812. type: "msra"
  813. }
  814. bias_filler {
  815. type: "constant"
  816. value: 0.0
  817. }
  818. }
  819. }
  820. layer {
  821. name: "conv12/relu"
  822. type: "ReLU"
  823. bottom: "conv12"
  824. top: "conv12"
  825. }
  826. layer {
  827. name: "conv13/dw"
  828. type: "Convolution"
  829. bottom: "conv12"
  830. top: "conv13/dw"
  831. param {
  832. lr_mult: 1.0
  833. decay_mult: 1.0
  834. }
  835. param {
  836. lr_mult: 2.0
  837. decay_mult: 0.0
  838. }
  839. convolution_param {
  840. num_output: 1024
  841. pad: 1
  842. kernel_size: 3
  843. group: 1024
  844. engine: CAFFE
  845. weight_filler {
  846. type: "msra"
  847. }
  848. bias_filler {
  849. type: "constant"
  850. value: 0.0
  851. }
  852. }
  853. }
  854. layer {
  855. name: "conv13/dw/relu"
  856. type: "ReLU"
  857. bottom: "conv13/dw"
  858. top: "conv13/dw"
  859. }
  860. layer {
  861. name: "conv13"
  862. type: "Convolution"
  863. bottom: "conv13/dw"
  864. top: "conv13"
  865. param {
  866. lr_mult: 1.0
  867. decay_mult: 1.0
  868. }
  869. param {
  870. lr_mult: 2.0
  871. decay_mult: 0.0
  872. }
  873. convolution_param {
  874. num_output: 1024
  875. kernel_size: 1
  876. weight_filler {
  877. type: "msra"
  878. }
  879. bias_filler {
  880. type: "constant"
  881. value: 0.0
  882. }
  883. }
  884. }
  885. layer {
  886. name: "conv13/relu"
  887. type: "ReLU"
  888. bottom: "conv13"
  889. top: "conv13"
  890. }
  891. layer {
  892. name: "conv14_1"
  893. type: "Convolution"
  894. bottom: "conv13"
  895. top: "conv14_1"
  896. param {
  897. lr_mult: 1.0
  898. decay_mult: 1.0
  899. }
  900. param {
  901. lr_mult: 2.0
  902. decay_mult: 0.0
  903. }
  904. convolution_param {
  905. num_output: 256
  906. kernel_size: 1
  907. weight_filler {
  908. type: "msra"
  909. }
  910. bias_filler {
  911. type: "constant"
  912. value: 0.0
  913. }
  914. }
  915. }
  916. layer {
  917. name: "conv14_1/relu"
  918. type: "ReLU"
  919. bottom: "conv14_1"
  920. top: "conv14_1"
  921. }
  922. layer {
  923. name: "conv14_2"
  924. type: "Convolution"
  925. bottom: "conv14_1"
  926. top: "conv14_2"
  927. param {
  928. lr_mult: 1.0
  929. decay_mult: 1.0
  930. }
  931. param {
  932. lr_mult: 2.0
  933. decay_mult: 0.0
  934. }
  935. convolution_param {
  936. num_output: 512
  937. pad: 1
  938. kernel_size: 3
  939. stride: 2
  940. weight_filler {
  941. type: "msra"
  942. }
  943. bias_filler {
  944. type: "constant"
  945. value: 0.0
  946. }
  947. }
  948. }
  949. layer {
  950. name: "conv14_2/relu"
  951. type: "ReLU"
  952. bottom: "conv14_2"
  953. top: "conv14_2"
  954. }
  955. layer {
  956. name: "conv15_1"
  957. type: "Convolution"
  958. bottom: "conv14_2"
  959. top: "conv15_1"
  960. param {
  961. lr_mult: 1.0
  962. decay_mult: 1.0
  963. }
  964. param {
  965. lr_mult: 2.0
  966. decay_mult: 0.0
  967. }
  968. convolution_param {
  969. num_output: 128
  970. kernel_size: 1
  971. weight_filler {
  972. type: "msra"
  973. }
  974. bias_filler {
  975. type: "constant"
  976. value: 0.0
  977. }
  978. }
  979. }
  980. layer {
  981. name: "conv15_1/relu"
  982. type: "ReLU"
  983. bottom: "conv15_1"
  984. top: "conv15_1"
  985. }
  986. layer {
  987. name: "conv15_2"
  988. type: "Convolution"
  989. bottom: "conv15_1"
  990. top: "conv15_2"
  991. param {
  992. lr_mult: 1.0
  993. decay_mult: 1.0
  994. }
  995. param {
  996. lr_mult: 2.0
  997. decay_mult: 0.0
  998. }
  999. convolution_param {
  1000. num_output: 256
  1001. pad: 1
  1002. kernel_size: 3
  1003. stride: 2
  1004. weight_filler {
  1005. type: "msra"
  1006. }
  1007. bias_filler {
  1008. type: "constant"
  1009. value: 0.0
  1010. }
  1011. }
  1012. }
  1013. layer {
  1014. name: "conv15_2/relu"
  1015. type: "ReLU"
  1016. bottom: "conv15_2"
  1017. top: "conv15_2"
  1018. }
  1019. layer {
  1020. name: "conv16_1"
  1021. type: "Convolution"
  1022. bottom: "conv15_2"
  1023. top: "conv16_1"
  1024. param {
  1025. lr_mult: 1.0
  1026. decay_mult: 1.0
  1027. }
  1028. param {
  1029. lr_mult: 2.0
  1030. decay_mult: 0.0
  1031. }
  1032. convolution_param {
  1033. num_output: 128
  1034. kernel_size: 1
  1035. weight_filler {
  1036. type: "msra"
  1037. }
  1038. bias_filler {
  1039. type: "constant"
  1040. value: 0.0
  1041. }
  1042. }
  1043. }
  1044. layer {
  1045. name: "conv16_1/relu"
  1046. type: "ReLU"
  1047. bottom: "conv16_1"
  1048. top: "conv16_1"
  1049. }
  1050. layer {
  1051. name: "conv16_2"
  1052. type: "Convolution"
  1053. bottom: "conv16_1"
  1054. top: "conv16_2"
  1055. param {
  1056. lr_mult: 1.0
  1057. decay_mult: 1.0
  1058. }
  1059. param {
  1060. lr_mult: 2.0
  1061. decay_mult: 0.0
  1062. }
  1063. convolution_param {
  1064. num_output: 256
  1065. pad: 1
  1066. kernel_size: 3
  1067. stride: 2
  1068. weight_filler {
  1069. type: "msra"
  1070. }
  1071. bias_filler {
  1072. type: "constant"
  1073. value: 0.0
  1074. }
  1075. }
  1076. }
  1077. layer {
  1078. name: "conv16_2/relu"
  1079. type: "ReLU"
  1080. bottom: "conv16_2"
  1081. top: "conv16_2"
  1082. }
  1083. layer {
  1084. name: "conv17_1"
  1085. type: "Convolution"
  1086. bottom: "conv16_2"
  1087. top: "conv17_1"
  1088. param {
  1089. lr_mult: 1.0
  1090. decay_mult: 1.0
  1091. }
  1092. param {
  1093. lr_mult: 2.0
  1094. decay_mult: 0.0
  1095. }
  1096. convolution_param {
  1097. num_output: 64
  1098. kernel_size: 1
  1099. weight_filler {
  1100. type: "msra"
  1101. }
  1102. bias_filler {
  1103. type: "constant"
  1104. value: 0.0
  1105. }
  1106. }
  1107. }
  1108. layer {
  1109. name: "conv17_1/relu"
  1110. type: "ReLU"
  1111. bottom: "conv17_1"
  1112. top: "conv17_1"
  1113. }
  1114. layer {
  1115. name: "conv17_2"
  1116. type: "Convolution"
  1117. bottom: "conv17_1"
  1118. top: "conv17_2"
  1119. param {
  1120. lr_mult: 1.0
  1121. decay_mult: 1.0
  1122. }
  1123. param {
  1124. lr_mult: 2.0
  1125. decay_mult: 0.0
  1126. }
  1127. convolution_param {
  1128. num_output: 128
  1129. pad: 1
  1130. kernel_size: 3
  1131. stride: 2
  1132. weight_filler {
  1133. type: "msra"
  1134. }
  1135. bias_filler {
  1136. type: "constant"
  1137. value: 0.0
  1138. }
  1139. }
  1140. }
  1141. layer {
  1142. name: "conv17_2/relu"
  1143. type: "ReLU"
  1144. bottom: "conv17_2"
  1145. top: "conv17_2"
  1146. }
  1147. layer {
  1148. name: "conv11_mbox_loc"
  1149. type: "Convolution"
  1150. bottom: "conv11"
  1151. top: "conv11_mbox_loc"
  1152. param {
  1153. lr_mult: 1.0
  1154. decay_mult: 1.0
  1155. }
  1156. param {
  1157. lr_mult: 2.0
  1158. decay_mult: 0.0
  1159. }
  1160. convolution_param {
  1161. num_output: 12
  1162. kernel_size: 1
  1163. weight_filler {
  1164. type: "msra"
  1165. }
  1166. bias_filler {
  1167. type: "constant"
  1168. value: 0.0
  1169. }
  1170. }
  1171. }
  1172. layer {
  1173. name: "conv11_mbox_loc_perm"
  1174. type: "Permute"
  1175. bottom: "conv11_mbox_loc"
  1176. top: "conv11_mbox_loc_perm"
  1177. permute_param {
  1178. order: 0
  1179. order: 2
  1180. order: 3
  1181. order: 1
  1182. }
  1183. }
  1184. layer {
  1185. name: "conv11_mbox_loc_flat"
  1186. type: "Flatten"
  1187. bottom: "conv11_mbox_loc_perm"
  1188. top: "conv11_mbox_loc_flat"
  1189. flatten_param {
  1190. axis: 1
  1191. }
  1192. }
  1193. layer {
  1194. name: "conv11_mbox_conf"
  1195. type: "Convolution"
  1196. bottom: "conv11"
  1197. top: "conv11_mbox_conf"
  1198. param {
  1199. lr_mult: 1.0
  1200. decay_mult: 1.0
  1201. }
  1202. param {
  1203. lr_mult: 2.0
  1204. decay_mult: 0.0
  1205. }
  1206. convolution_param {
  1207. num_output: 63
  1208. kernel_size: 1
  1209. weight_filler {
  1210. type: "msra"
  1211. }
  1212. bias_filler {
  1213. type: "constant"
  1214. value: 0.0
  1215. }
  1216. }
  1217. }
  1218. layer {
  1219. name: "conv11_mbox_conf_perm"
  1220. type: "Permute"
  1221. bottom: "conv11_mbox_conf"
  1222. top: "conv11_mbox_conf_perm"
  1223. permute_param {
  1224. order: 0
  1225. order: 2
  1226. order: 3
  1227. order: 1
  1228. }
  1229. }
  1230. layer {
  1231. name: "conv11_mbox_conf_flat"
  1232. type: "Flatten"
  1233. bottom: "conv11_mbox_conf_perm"
  1234. top: "conv11_mbox_conf_flat"
  1235. flatten_param {
  1236. axis: 1
  1237. }
  1238. }
  1239. layer {
  1240. name: "conv11_mbox_priorbox"
  1241. type: "PriorBox"
  1242. bottom: "conv11"
  1243. bottom: "data"
  1244. top: "conv11_mbox_priorbox"
  1245. prior_box_param {
  1246. min_size: 60.0
  1247. aspect_ratio: 2.0
  1248. flip: true
  1249. clip: false
  1250. variance: 0.1
  1251. variance: 0.1
  1252. variance: 0.2
  1253. variance: 0.2
  1254. offset: 0.5
  1255. }
  1256. }
  1257. layer {
  1258. name: "conv13_mbox_loc"
  1259. type: "Convolution"
  1260. bottom: "conv13"
  1261. top: "conv13_mbox_loc"
  1262. param {
  1263. lr_mult: 1.0
  1264. decay_mult: 1.0
  1265. }
  1266. param {
  1267. lr_mult: 2.0
  1268. decay_mult: 0.0
  1269. }
  1270. convolution_param {
  1271. num_output: 24
  1272. kernel_size: 1
  1273. weight_filler {
  1274. type: "msra"
  1275. }
  1276. bias_filler {
  1277. type: "constant"
  1278. value: 0.0
  1279. }
  1280. }
  1281. }
  1282. layer {
  1283. name: "conv13_mbox_loc_perm"
  1284. type: "Permute"
  1285. bottom: "conv13_mbox_loc"
  1286. top: "conv13_mbox_loc_perm"
  1287. permute_param {
  1288. order: 0
  1289. order: 2
  1290. order: 3
  1291. order: 1
  1292. }
  1293. }
  1294. layer {
  1295. name: "conv13_mbox_loc_flat"
  1296. type: "Flatten"
  1297. bottom: "conv13_mbox_loc_perm"
  1298. top: "conv13_mbox_loc_flat"
  1299. flatten_param {
  1300. axis: 1
  1301. }
  1302. }
  1303. layer {
  1304. name: "conv13_mbox_conf"
  1305. type: "Convolution"
  1306. bottom: "conv13"
  1307. top: "conv13_mbox_conf"
  1308. param {
  1309. lr_mult: 1.0
  1310. decay_mult: 1.0
  1311. }
  1312. param {
  1313. lr_mult: 2.0
  1314. decay_mult: 0.0
  1315. }
  1316. convolution_param {
  1317. num_output: 126
  1318. kernel_size: 1
  1319. weight_filler {
  1320. type: "msra"
  1321. }
  1322. bias_filler {
  1323. type: "constant"
  1324. value: 0.0
  1325. }
  1326. }
  1327. }
  1328. layer {
  1329. name: "conv13_mbox_conf_perm"
  1330. type: "Permute"
  1331. bottom: "conv13_mbox_conf"
  1332. top: "conv13_mbox_conf_perm"
  1333. permute_param {
  1334. order: 0
  1335. order: 2
  1336. order: 3
  1337. order: 1
  1338. }
  1339. }
  1340. layer {
  1341. name: "conv13_mbox_conf_flat"
  1342. type: "Flatten"
  1343. bottom: "conv13_mbox_conf_perm"
  1344. top: "conv13_mbox_conf_flat"
  1345. flatten_param {
  1346. axis: 1
  1347. }
  1348. }
  1349. layer {
  1350. name: "conv13_mbox_priorbox"
  1351. type: "PriorBox"
  1352. bottom: "conv13"
  1353. bottom: "data"
  1354. top: "conv13_mbox_priorbox"
  1355. prior_box_param {
  1356. min_size: 105.0
  1357. max_size: 150.0
  1358. aspect_ratio: 2.0
  1359. aspect_ratio: 3.0
  1360. flip: true
  1361. clip: false
  1362. variance: 0.1
  1363. variance: 0.1
  1364. variance: 0.2
  1365. variance: 0.2
  1366. offset: 0.5
  1367. }
  1368. }
  1369. layer {
  1370. name: "conv14_2_mbox_loc"
  1371. type: "Convolution"
  1372. bottom: "conv14_2"
  1373. top: "conv14_2_mbox_loc"
  1374. param {
  1375. lr_mult: 1.0
  1376. decay_mult: 1.0
  1377. }
  1378. param {
  1379. lr_mult: 2.0
  1380. decay_mult: 0.0
  1381. }
  1382. convolution_param {
  1383. num_output: 24
  1384. kernel_size: 1
  1385. weight_filler {
  1386. type: "msra"
  1387. }
  1388. bias_filler {
  1389. type: "constant"
  1390. value: 0.0
  1391. }
  1392. }
  1393. }
  1394. layer {
  1395. name: "conv14_2_mbox_loc_perm"
  1396. type: "Permute"
  1397. bottom: "conv14_2_mbox_loc"
  1398. top: "conv14_2_mbox_loc_perm"
  1399. permute_param {
  1400. order: 0
  1401. order: 2
  1402. order: 3
  1403. order: 1
  1404. }
  1405. }
  1406. layer {
  1407. name: "conv14_2_mbox_loc_flat"
  1408. type: "Flatten"
  1409. bottom: "conv14_2_mbox_loc_perm"
  1410. top: "conv14_2_mbox_loc_flat"
  1411. flatten_param {
  1412. axis: 1
  1413. }
  1414. }
  1415. layer {
  1416. name: "conv14_2_mbox_conf"
  1417. type: "Convolution"
  1418. bottom: "conv14_2"
  1419. top: "conv14_2_mbox_conf"
  1420. param {
  1421. lr_mult: 1.0
  1422. decay_mult: 1.0
  1423. }
  1424. param {
  1425. lr_mult: 2.0
  1426. decay_mult: 0.0
  1427. }
  1428. convolution_param {
  1429. num_output: 126
  1430. kernel_size: 1
  1431. weight_filler {
  1432. type: "msra"
  1433. }
  1434. bias_filler {
  1435. type: "constant"
  1436. value: 0.0
  1437. }
  1438. }
  1439. }
  1440. layer {
  1441. name: "conv14_2_mbox_conf_perm"
  1442. type: "Permute"
  1443. bottom: "conv14_2_mbox_conf"
  1444. top: "conv14_2_mbox_conf_perm"
  1445. permute_param {
  1446. order: 0
  1447. order: 2
  1448. order: 3
  1449. order: 1
  1450. }
  1451. }
  1452. layer {
  1453. name: "conv14_2_mbox_conf_flat"
  1454. type: "Flatten"
  1455. bottom: "conv14_2_mbox_conf_perm"
  1456. top: "conv14_2_mbox_conf_flat"
  1457. flatten_param {
  1458. axis: 1
  1459. }
  1460. }
  1461. layer {
  1462. name: "conv14_2_mbox_priorbox"
  1463. type: "PriorBox"
  1464. bottom: "conv14_2"
  1465. bottom: "data"
  1466. top: "conv14_2_mbox_priorbox"
  1467. prior_box_param {
  1468. min_size: 150.0
  1469. max_size: 195.0
  1470. aspect_ratio: 2.0
  1471. aspect_ratio: 3.0
  1472. flip: true
  1473. clip: false
  1474. variance: 0.1
  1475. variance: 0.1
  1476. variance: 0.2
  1477. variance: 0.2
  1478. offset: 0.5
  1479. }
  1480. }
  1481. layer {
  1482. name: "conv15_2_mbox_loc"
  1483. type: "Convolution"
  1484. bottom: "conv15_2"
  1485. top: "conv15_2_mbox_loc"
  1486. param {
  1487. lr_mult: 1.0
  1488. decay_mult: 1.0
  1489. }
  1490. param {
  1491. lr_mult: 2.0
  1492. decay_mult: 0.0
  1493. }
  1494. convolution_param {
  1495. num_output: 24
  1496. kernel_size: 1
  1497. weight_filler {
  1498. type: "msra"
  1499. }
  1500. bias_filler {
  1501. type: "constant"
  1502. value: 0.0
  1503. }
  1504. }
  1505. }
  1506. layer {
  1507. name: "conv15_2_mbox_loc_perm"
  1508. type: "Permute"
  1509. bottom: "conv15_2_mbox_loc"
  1510. top: "conv15_2_mbox_loc_perm"
  1511. permute_param {
  1512. order: 0
  1513. order: 2
  1514. order: 3
  1515. order: 1
  1516. }
  1517. }
  1518. layer {
  1519. name: "conv15_2_mbox_loc_flat"
  1520. type: "Flatten"
  1521. bottom: "conv15_2_mbox_loc_perm"
  1522. top: "conv15_2_mbox_loc_flat"
  1523. flatten_param {
  1524. axis: 1
  1525. }
  1526. }
  1527. layer {
  1528. name: "conv15_2_mbox_conf"
  1529. type: "Convolution"
  1530. bottom: "conv15_2"
  1531. top: "conv15_2_mbox_conf"
  1532. param {
  1533. lr_mult: 1.0
  1534. decay_mult: 1.0
  1535. }
  1536. param {
  1537. lr_mult: 2.0
  1538. decay_mult: 0.0
  1539. }
  1540. convolution_param {
  1541. num_output: 126
  1542. kernel_size: 1
  1543. weight_filler {
  1544. type: "msra"
  1545. }
  1546. bias_filler {
  1547. type: "constant"
  1548. value: 0.0
  1549. }
  1550. }
  1551. }
  1552. layer {
  1553. name: "conv15_2_mbox_conf_perm"
  1554. type: "Permute"
  1555. bottom: "conv15_2_mbox_conf"
  1556. top: "conv15_2_mbox_conf_perm"
  1557. permute_param {
  1558. order: 0
  1559. order: 2
  1560. order: 3
  1561. order: 1
  1562. }
  1563. }
  1564. layer {
  1565. name: "conv15_2_mbox_conf_flat"
  1566. type: "Flatten"
  1567. bottom: "conv15_2_mbox_conf_perm"
  1568. top: "conv15_2_mbox_conf_flat"
  1569. flatten_param {
  1570. axis: 1
  1571. }
  1572. }
  1573. layer {
  1574. name: "conv15_2_mbox_priorbox"
  1575. type: "PriorBox"
  1576. bottom: "conv15_2"
  1577. bottom: "data"
  1578. top: "conv15_2_mbox_priorbox"
  1579. prior_box_param {
  1580. min_size: 195.0
  1581. max_size: 240.0
  1582. aspect_ratio: 2.0
  1583. aspect_ratio: 3.0
  1584. flip: true
  1585. clip: false
  1586. variance: 0.1
  1587. variance: 0.1
  1588. variance: 0.2
  1589. variance: 0.2
  1590. offset: 0.5
  1591. }
  1592. }
  1593. layer {
  1594. name: "conv16_2_mbox_loc"
  1595. type: "Convolution"
  1596. bottom: "conv16_2"
  1597. top: "conv16_2_mbox_loc"
  1598. param {
  1599. lr_mult: 1.0
  1600. decay_mult: 1.0
  1601. }
  1602. param {
  1603. lr_mult: 2.0
  1604. decay_mult: 0.0
  1605. }
  1606. convolution_param {
  1607. num_output: 24
  1608. kernel_size: 1
  1609. weight_filler {
  1610. type: "msra"
  1611. }
  1612. bias_filler {
  1613. type: "constant"
  1614. value: 0.0
  1615. }
  1616. }
  1617. }
  1618. layer {
  1619. name: "conv16_2_mbox_loc_perm"
  1620. type: "Permute"
  1621. bottom: "conv16_2_mbox_loc"
  1622. top: "conv16_2_mbox_loc_perm"
  1623. permute_param {
  1624. order: 0
  1625. order: 2
  1626. order: 3
  1627. order: 1
  1628. }
  1629. }
  1630. layer {
  1631. name: "conv16_2_mbox_loc_flat"
  1632. type: "Flatten"
  1633. bottom: "conv16_2_mbox_loc_perm"
  1634. top: "conv16_2_mbox_loc_flat"
  1635. flatten_param {
  1636. axis: 1
  1637. }
  1638. }
  1639. layer {
  1640. name: "conv16_2_mbox_conf"
  1641. type: "Convolution"
  1642. bottom: "conv16_2"
  1643. top: "conv16_2_mbox_conf"
  1644. param {
  1645. lr_mult: 1.0
  1646. decay_mult: 1.0
  1647. }
  1648. param {
  1649. lr_mult: 2.0
  1650. decay_mult: 0.0
  1651. }
  1652. convolution_param {
  1653. num_output: 126
  1654. kernel_size: 1
  1655. weight_filler {
  1656. type: "msra"
  1657. }
  1658. bias_filler {
  1659. type: "constant"
  1660. value: 0.0
  1661. }
  1662. }
  1663. }
  1664. layer {
  1665. name: "conv16_2_mbox_conf_perm"
  1666. type: "Permute"
  1667. bottom: "conv16_2_mbox_conf"
  1668. top: "conv16_2_mbox_conf_perm"
  1669. permute_param {
  1670. order: 0
  1671. order: 2
  1672. order: 3
  1673. order: 1
  1674. }
  1675. }
  1676. layer {
  1677. name: "conv16_2_mbox_conf_flat"
  1678. type: "Flatten"
  1679. bottom: "conv16_2_mbox_conf_perm"
  1680. top: "conv16_2_mbox_conf_flat"
  1681. flatten_param {
  1682. axis: 1
  1683. }
  1684. }
  1685. layer {
  1686. name: "conv16_2_mbox_priorbox"
  1687. type: "PriorBox"
  1688. bottom: "conv16_2"
  1689. bottom: "data"
  1690. top: "conv16_2_mbox_priorbox"
  1691. prior_box_param {
  1692. min_size: 240.0
  1693. max_size: 285.0
  1694. aspect_ratio: 2.0
  1695. aspect_ratio: 3.0
  1696. flip: true
  1697. clip: false
  1698. variance: 0.1
  1699. variance: 0.1
  1700. variance: 0.2
  1701. variance: 0.2
  1702. offset: 0.5
  1703. }
  1704. }
  1705. layer {
  1706. name: "conv17_2_mbox_loc"
  1707. type: "Convolution"
  1708. bottom: "conv17_2"
  1709. top: "conv17_2_mbox_loc"
  1710. param {
  1711. lr_mult: 1.0
  1712. decay_mult: 1.0
  1713. }
  1714. param {
  1715. lr_mult: 2.0
  1716. decay_mult: 0.0
  1717. }
  1718. convolution_param {
  1719. num_output: 24
  1720. kernel_size: 1
  1721. weight_filler {
  1722. type: "msra"
  1723. }
  1724. bias_filler {
  1725. type: "constant"
  1726. value: 0.0
  1727. }
  1728. }
  1729. }
  1730. layer {
  1731. name: "conv17_2_mbox_loc_perm"
  1732. type: "Permute"
  1733. bottom: "conv17_2_mbox_loc"
  1734. top: "conv17_2_mbox_loc_perm"
  1735. permute_param {
  1736. order: 0
  1737. order: 2
  1738. order: 3
  1739. order: 1
  1740. }
  1741. }
  1742. layer {
  1743. name: "conv17_2_mbox_loc_flat"
  1744. type: "Flatten"
  1745. bottom: "conv17_2_mbox_loc_perm"
  1746. top: "conv17_2_mbox_loc_flat"
  1747. flatten_param {
  1748. axis: 1
  1749. }
  1750. }
  1751. layer {
  1752. name: "conv17_2_mbox_conf"
  1753. type: "Convolution"
  1754. bottom: "conv17_2"
  1755. top: "conv17_2_mbox_conf"
  1756. param {
  1757. lr_mult: 1.0
  1758. decay_mult: 1.0
  1759. }
  1760. param {
  1761. lr_mult: 2.0
  1762. decay_mult: 0.0
  1763. }
  1764. convolution_param {
  1765. num_output: 126
  1766. kernel_size: 1
  1767. weight_filler {
  1768. type: "msra"
  1769. }
  1770. bias_filler {
  1771. type: "constant"
  1772. value: 0.0
  1773. }
  1774. }
  1775. }
  1776. layer {
  1777. name: "conv17_2_mbox_conf_perm"
  1778. type: "Permute"
  1779. bottom: "conv17_2_mbox_conf"
  1780. top: "conv17_2_mbox_conf_perm"
  1781. permute_param {
  1782. order: 0
  1783. order: 2
  1784. order: 3
  1785. order: 1
  1786. }
  1787. }
  1788. layer {
  1789. name: "conv17_2_mbox_conf_flat"
  1790. type: "Flatten"
  1791. bottom: "conv17_2_mbox_conf_perm"
  1792. top: "conv17_2_mbox_conf_flat"
  1793. flatten_param {
  1794. axis: 1
  1795. }
  1796. }
  1797. layer {
  1798. name: "conv17_2_mbox_priorbox"
  1799. type: "PriorBox"
  1800. bottom: "conv17_2"
  1801. bottom: "data"
  1802. top: "conv17_2_mbox_priorbox"
  1803. prior_box_param {
  1804. min_size: 285.0
  1805. max_size: 300.0
  1806. aspect_ratio: 2.0
  1807. aspect_ratio: 3.0
  1808. flip: true
  1809. clip: false
  1810. variance: 0.1
  1811. variance: 0.1
  1812. variance: 0.2
  1813. variance: 0.2
  1814. offset: 0.5
  1815. }
  1816. }
  1817. layer {
  1818. name: "mbox_loc"
  1819. type: "Concat"
  1820. bottom: "conv11_mbox_loc_flat"
  1821. bottom: "conv13_mbox_loc_flat"
  1822. bottom: "conv14_2_mbox_loc_flat"
  1823. bottom: "conv15_2_mbox_loc_flat"
  1824. bottom: "conv16_2_mbox_loc_flat"
  1825. bottom: "conv17_2_mbox_loc_flat"
  1826. top: "mbox_loc"
  1827. concat_param {
  1828. axis: 1
  1829. }
  1830. }
  1831. layer {
  1832. name: "mbox_conf"
  1833. type: "Concat"
  1834. bottom: "conv11_mbox_conf_flat"
  1835. bottom: "conv13_mbox_conf_flat"
  1836. bottom: "conv14_2_mbox_conf_flat"
  1837. bottom: "conv15_2_mbox_conf_flat"
  1838. bottom: "conv16_2_mbox_conf_flat"
  1839. bottom: "conv17_2_mbox_conf_flat"
  1840. top: "mbox_conf"
  1841. concat_param {
  1842. axis: 1
  1843. }
  1844. }
  1845. layer {
  1846. name: "mbox_priorbox"
  1847. type: "Concat"
  1848. bottom: "conv11_mbox_priorbox"
  1849. bottom: "conv13_mbox_priorbox"
  1850. bottom: "conv14_2_mbox_priorbox"
  1851. bottom: "conv15_2_mbox_priorbox"
  1852. bottom: "conv16_2_mbox_priorbox"
  1853. bottom: "conv17_2_mbox_priorbox"
  1854. top: "mbox_priorbox"
  1855. concat_param {
  1856. axis: 2
  1857. }
  1858. }
  1859. layer {
  1860. name: "mbox_conf_reshape"
  1861. type: "Reshape"
  1862. bottom: "mbox_conf"
  1863. top: "mbox_conf_reshape"
  1864. reshape_param {
  1865. shape {
  1866. dim: 0
  1867. dim: -1
  1868. dim: 21
  1869. }
  1870. }
  1871. }
  1872. layer {
  1873. name: "mbox_conf_softmax"
  1874. type: "Softmax"
  1875. bottom: "mbox_conf_reshape"
  1876. top: "mbox_conf_softmax"
  1877. softmax_param {
  1878. axis: 2
  1879. }
  1880. }
  1881. layer {
  1882. name: "mbox_conf_flatten"
  1883. type: "Flatten"
  1884. bottom: "mbox_conf_softmax"
  1885. top: "mbox_conf_flatten"
  1886. flatten_param {
  1887. axis: 1
  1888. }
  1889. }
  1890. layer {
  1891. name: "detection_out"
  1892. type: "DetectionOutput"
  1893. bottom: "mbox_loc"
  1894. bottom: "mbox_conf_flatten"
  1895. bottom: "mbox_priorbox"
  1896. top: "detection_out"
  1897. include {
  1898. phase: TEST
  1899. }
  1900. detection_output_param {
  1901. num_classes: 21
  1902. share_location: true
  1903. background_label_id: 0
  1904. nms_param {
  1905. nms_threshold: 0.45
  1906. top_k: 100
  1907. }
  1908. code_type: CENTER_SIZE
  1909. keep_top_k: 100
  1910. confidence_threshold: 0.25
  1911. }
  1912. }