|
|
@@ -1,3 +1,5 @@ |
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
from imutils.video import VideoStream |
|
|
|
from imutils.video import FPS |
|
|
|
import argparse |
|
|
@@ -58,8 +60,10 @@ differ = None |
|
|
|
now = '' |
|
|
|
framecounter = 0 |
|
|
|
trackeron = 0 |
|
|
|
people_count_total = 0 |
|
|
|
|
|
|
|
while True: |
|
|
|
people_count_per_frame = 0 |
|
|
|
frame = vs.read() |
|
|
|
frame = frame if args.get("video", None) is None else frame[1] |
|
|
|
# if the frame can not be grabbed, then we have reached the end of the video |
|
|
@@ -87,15 +91,19 @@ while True: |
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours on thresholded image |
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2) |
|
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
cnts = cnts[0] if imutils.is_cv2() else cnts[1] |
|
|
|
thresh = np.uint8(thresh) |
|
|
|
cnts, im2 = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
#cnts = cnts if imutils.is_cv2() else im2 |
|
|
|
#print(len(cnts)) |
|
|
|
#if len(cnts) > 1: |
|
|
|
#cnts = cnts[0] if imutils.is_cv2() else cnts[1] |
|
|
|
|
|
|
|
# loop over the contours identified |
|
|
|
contourcount = 0 |
|
|
|
for c in cnts: |
|
|
|
contourcount = contourcount + 1 |
|
|
|
|
|
|
|
# if the contour is too small, ignore it |
|
|
|
# if the contour is too small, ignore it |
|
|
|
if cv2.contourArea(c) < args["min_area"]: |
|
|
|
continue |
|
|
|
|
|
|
@@ -103,8 +111,8 @@ while True: |
|
|
|
(x, y, w, h) = cv2.boundingRect(c) |
|
|
|
initBB2 =(x,y,w,h) |
|
|
|
|
|
|
|
prott1 = r'ML-Models\MobileNetSSD_deploy.prototxt' |
|
|
|
prott2 = r'ML-Models\MobileNetSSD_deploy.caffemodel' |
|
|
|
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt' |
|
|
|
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel' |
|
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2) |
|
|
|
|
|
|
|
CLASSES = ["person"] |
|
|
@@ -120,22 +128,28 @@ while True: |
|
|
|
for i in np.arange(0, detections.shape[2]): |
|
|
|
confidence = detections[0, 0, i, 2] |
|
|
|
|
|
|
|
confidence_level = 0.7 |
|
|
|
confidence_level = 0.8 |
|
|
|
|
|
|
|
if confidence > confidence_level: |
|
|
|
people_count_per_frame+=1 |
|
|
|
people_count_total+=1 |
|
|
|
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of |
|
|
|
# the bounding box for the object |
|
|
|
idx = int(detections[0, 0, i, 1]) |
|
|
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
|
|
(startX, startY, endX, endY) = box.astype("int") |
|
|
|
# draw the prediction on the frame |
|
|
|
label = "{}: {:.2f}%".format(CLASSES[idx], |
|
|
|
confidence * 100) |
|
|
|
cv2.rectangle(frame, (startX, startY), (endX, endY), |
|
|
|
COLORS[idx], 2) |
|
|
|
|
|
|
|
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) |
|
|
|
label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100) |
|
|
|
|
|
|
|
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) |
|
|
|
cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[0], 2) |
|
|
|
|
|
|
|
y = startY - 15 if startY - 15 > 15 else startY + 15 |
|
|
|
cv2.putText(frame, label, (startX, y), |
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) |
|
|
|
|
|
|
|
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) |
|
|
|
cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[0], 2) |
|
|
|
|
|
|
|
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2) |
|
|
|
# Start tracker |
|
|
@@ -146,7 +160,7 @@ while True: |
|
|
|
|
|
|
|
|
|
|
|
# check to see if we are currently tracking an object, if so, ignore other boxes |
|
|
|
# this code is relevant if we want to identify particular persons (section 2 of this tutorial) |
|
|
|
# this code is relevant if we want to identify particular persons |
|
|
|
if initBB2 is not None: |
|
|
|
|
|
|
|
# grab the new bounding box coordinates of the object |
|
|
@@ -173,6 +187,8 @@ while True: |
|
|
|
info = [ |
|
|
|
("Success", "Yes" if success else "No"), |
|
|
|
("FPS", "{:.2f}".format(fps.fps())), |
|
|
|
("People Frame", "{}".format(people_count_per_frame)), |
|
|
|
("People Total", "{}".format(people_count_total)) |
|
|
|
] |
|
|
|
|
|
|
|
# loop over the info tuples and draw them on our frame |
|
|
@@ -183,8 +199,7 @@ while True: |
|
|
|
# draw the text and timestamp on the frame |
|
|
|
now2 = datetime.now() |
|
|
|
time_passed_seconds = str((now2-now).seconds) |
|
|
|
cv2.putText(frame, 'Detecting persons',(10, 20), |
|
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) |
|
|
|
cv2.putText(frame, 'Detecting persons',(10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) |
|
|
|
|
|
|
|
# show the frame and record if the user presses a key |
|
|
|
cv2.imshow("Video stream", frame) |