Browse Source

Refactor video_presence to class

master
Lennart Heimbs 5 years ago
parent
commit
91256c65fe
3 changed files with 172 additions and 2 deletions
  1. 2
    1
      camera/.vscode/launch.json
  2. 168
    0
      camera/person_detection.py
  3. 2
    1
      camera/video_stream/zmq_video_server.py

+ 2
- 1
camera/.vscode/launch.json View File

@@ -1,6 +1,7 @@
{
"version": "0.2.0",
"configurations": [

{
"name": "Python: Current File",
"type": "python",
@@ -15,7 +16,7 @@
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"args": ["-v", "~/Videos/video.h264"]
"args": ["-v", "run.mp4"]
}
]
}

+ 168
- 0
camera/person_detection.py View File

@@ -0,0 +1,168 @@
#!/usr/bin/env python

from imutils.video import VideoStream
from imutils.video import FPS
import argparse
import imutils
import cv2
from datetime import datetime, time
import numpy as np
import time as time2

VISUAL_DEBUG=True

def getArgs():
""" Arguments """
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type")
return vars(ap.parse_args())


def main():
args = getArgs()

# if the video argument is None, then the code will read from webcam (work in progress)
if args.get("video", None) is None:
vs = VideoStream(src=0).start()
time2.sleep(2.0)
# otherwise, we are reading from a video file
else:
vs = cv2.VideoCapture(args["video"])

cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL)
detector = DetectionFromFrame(args["min_area"], 0.8)
while True:
detector.currentFrame = vs.read()
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1]
# if the frame can not be grabbed, then we have reached the end of the video
if detector.currentFrame is None:
break

# resize the frame to 500
detector.currentFrame = imutils.resize(detector.currentFrame, width=500)
detector.framecounter+=1
if detector.framecounter > 1:
cnts = detector.prepareFrame()
for c in cnts:
boundRect = cv2.boundingRect(c)
#(x, y, w, h) = cv2.boundingRect(c)
#initBB2 =(x,y,w,h)

prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt'
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel'
net = cv2.dnn.readNetFromCaffe(prott1, prott2)

#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1]
trackbox = detector.currentFrame[boundRect[1]:boundRect[1]+boundRect[3],
boundRect[0]:boundRect[0]+boundRect[2]]
trackbox = cv2.resize(trackbox, (224, 224))
#cv2.imshow('image',trackbox)
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
net.setInput(blob)
detections = net.forward()

for i in np.arange(0, detections.shape[2]):
detector.detectConfidentiallyPeople(i, detections, boundRect)
cv2.rectangle(detector.currentFrame, (boundRect[0], boundRect[1]),
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (255, 255, 0), 1)

# show the frame and record if the user presses a key
cv2.imshow("Video stream", detector.currentFrame)
key = cv2.waitKey(1) & 0xFF

# if the `q` key is pressed, break from the lop
if key == ord("q"):
break
if key == ord("d"):
detector.firstFrame = None
#detector.lastFrame = detector.currentFrame

# finally, stop the camera/stream and close any open windows
vs.stop() if args.get("video", None) is None else vs.release()
cv2.destroyAllWindows()


class DetectionFromFrame:
def __init__(self, min_size, confidence):
self.min_size = min_size
self.confidence_level = confidence

self.firstFrame = None
self.currentFrame = None
self.initBB2 = None
self.fps = None
self.differ = None
self.now = ''
self.framecounter = 0
self.people_count_total = 0


def prepareFrame(self):
gray = cv2.cvtColor(self.currentFrame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)

# if the first frame is None, initialize it
if self.firstFrame is None:
self.firstFrame = gray
return []

# compute the absolute difference between the current frame and first frame
frameDelta = cv2.absdiff(self.firstFrame, gray)
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
#debug
"""if VISUAL_DEBUG:
cv2.imshow("debug image", thresh)
cv2.waitKey(0)
cv2.destroyWindow("debug image")
#cv2.destroyWindow("threshhold image")"""
# dilate the thresholded image to fill in holes
thresh = cv2.dilate(thresh, None, iterations=2)

# find contours on thresholded image
thresh = np.uint8(thresh)
cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

return cnts

def detectConfidentiallyPeople(self, i, detections, boundRect):
CLASSES = ["person"]

COLORS = [0,255,0]
#COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

confidence = detections[0, 0, i, 2]

if confidence > self.confidence_level:
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
#idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([boundRect[2], boundRect[3], boundRect[2], boundRect[3]])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100)
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
cv2.rectangle(self.currentFrame, (boundRect[0], boundRect[1]),
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (0,255, 0), 3)
y = boundRect[1] - 15 if boundRect[1] - 15 > 15 else boundRect[1] + 15

#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
cv2.putText(self.currentFrame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)
#cv2.imshow("Video stream", self.currentFrame)
#print("Person found")



if __name__ == "__main__":
main()

+ 2
- 1
camera/video_stream/zmq_video_server.py View File

@@ -7,4 +7,5 @@ while True: # show streamed images until Ctrl-C
rpi_name, image = image_hub.recv_image()
cv2.imshow(rpi_name, image) # 1 window for each RPi
cv2.waitKey(1)
image_hub.send_reply(b'OK')
image_hub.send_reply(b'OK')

Loading…
Cancel
Save