|
|
|
|
|
|
|
|
|
|
|
#!/usr/bin/env python |
|
|
|
|
|
|
|
|
|
|
|
from imutils.video import VideoStream |
|
|
|
|
|
from imutils.video import FPS |
|
|
|
|
|
import argparse |
|
|
|
|
|
import imutils |
|
|
|
|
|
import cv2 |
|
|
|
|
|
from datetime import datetime, time |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import time as time2 |
|
|
|
|
|
|
|
|
|
|
|
VISUAL_DEBUG=True |
|
|
|
|
|
|
|
|
|
|
|
def getArgs(): |
|
|
|
|
|
""" Arguments """ |
|
|
|
|
|
ap = argparse.ArgumentParser() |
|
|
|
|
|
ap.add_argument("-v", "--video", help="path to the video file") |
|
|
|
|
|
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size") |
|
|
|
|
|
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type") |
|
|
|
|
|
return vars(ap.parse_args()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
|
|
args = getArgs() |
|
|
|
|
|
|
|
|
|
|
|
# if the video argument is None, then the code will read from webcam (work in progress) |
|
|
|
|
|
if args.get("video", None) is None: |
|
|
|
|
|
vs = VideoStream(src=0).start() |
|
|
|
|
|
time2.sleep(2.0) |
|
|
|
|
|
# otherwise, we are reading from a video file |
|
|
|
|
|
else: |
|
|
|
|
|
vs = cv2.VideoCapture(args["video"]) |
|
|
|
|
|
|
|
|
|
|
|
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL) |
|
|
|
|
|
detector = DetectionFromFrame(args["min_area"], 0.8) |
|
|
|
|
|
while True: |
|
|
|
|
|
detector.currentFrame = vs.read() |
|
|
|
|
|
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1] |
|
|
|
|
|
# if the frame can not be grabbed, then we have reached the end of the video |
|
|
|
|
|
if detector.currentFrame is None: |
|
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
# resize the frame to 500 |
|
|
|
|
|
detector.currentFrame = imutils.resize(detector.currentFrame, width=500) |
|
|
|
|
|
detector.framecounter+=1 |
|
|
|
|
|
if detector.framecounter > 1: |
|
|
|
|
|
cnts = detector.prepareFrame() |
|
|
|
|
|
|
|
|
|
|
|
for c in cnts: |
|
|
|
|
|
boundRect = cv2.boundingRect(c) |
|
|
|
|
|
#(x, y, w, h) = cv2.boundingRect(c) |
|
|
|
|
|
#initBB2 =(x,y,w,h) |
|
|
|
|
|
|
|
|
|
|
|
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt' |
|
|
|
|
|
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel' |
|
|
|
|
|
net = cv2.dnn.readNetFromCaffe(prott1, prott2) |
|
|
|
|
|
|
|
|
|
|
|
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1] |
|
|
|
|
|
trackbox = detector.currentFrame[boundRect[1]:boundRect[1]+boundRect[3], |
|
|
|
|
|
boundRect[0]:boundRect[0]+boundRect[2]] |
|
|
|
|
|
trackbox = cv2.resize(trackbox, (224, 224)) |
|
|
|
|
|
#cv2.imshow('image',trackbox) |
|
|
|
|
|
|
|
|
|
|
|
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5) |
|
|
|
|
|
net.setInput(blob) |
|
|
|
|
|
detections = net.forward() |
|
|
|
|
|
|
|
|
|
|
|
for i in np.arange(0, detections.shape[2]): |
|
|
|
|
|
detector.detectConfidentiallyPeople(i, detections, boundRect) |
|
|
|
|
|
cv2.rectangle(detector.currentFrame, (boundRect[0], boundRect[1]), |
|
|
|
|
|
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (255, 255, 0), 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# show the frame and record if the user presses a key |
|
|
|
|
|
cv2.imshow("Video stream", detector.currentFrame) |
|
|
|
|
|
key = cv2.waitKey(1) & 0xFF |
|
|
|
|
|
|
|
|
|
|
|
# if the `q` key is pressed, break from the lop |
|
|
|
|
|
if key == ord("q"): |
|
|
|
|
|
break |
|
|
|
|
|
if key == ord("d"): |
|
|
|
|
|
detector.firstFrame = None |
|
|
|
|
|
#detector.lastFrame = detector.currentFrame |
|
|
|
|
|
|
|
|
|
|
|
# finally, stop the camera/stream and close any open windows |
|
|
|
|
|
vs.stop() if args.get("video", None) is None else vs.release() |
|
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DetectionFromFrame: |
|
|
|
|
|
def __init__(self, min_size, confidence): |
|
|
|
|
|
self.min_size = min_size |
|
|
|
|
|
self.confidence_level = confidence |
|
|
|
|
|
|
|
|
|
|
|
self.firstFrame = None |
|
|
|
|
|
self.currentFrame = None |
|
|
|
|
|
|
|
|
|
|
|
self.initBB2 = None |
|
|
|
|
|
self.fps = None |
|
|
|
|
|
self.differ = None |
|
|
|
|
|
self.now = '' |
|
|
|
|
|
self.framecounter = 0 |
|
|
|
|
|
self.people_count_total = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepareFrame(self): |
|
|
|
|
|
gray = cv2.cvtColor(self.currentFrame, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0) |
|
|
|
|
|
|
|
|
|
|
|
# if the first frame is None, initialize it |
|
|
|
|
|
if self.firstFrame is None: |
|
|
|
|
|
self.firstFrame = gray |
|
|
|
|
|
return [] |
|
|
|
|
|
|
|
|
|
|
|
# compute the absolute difference between the current frame and first frame |
|
|
|
|
|
frameDelta = cv2.absdiff(self.firstFrame, gray) |
|
|
|
|
|
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] |
|
|
|
|
|
|
|
|
|
|
|
#debug |
|
|
|
|
|
"""if VISUAL_DEBUG: |
|
|
|
|
|
cv2.imshow("debug image", thresh) |
|
|
|
|
|
cv2.waitKey(0) |
|
|
|
|
|
cv2.destroyWindow("debug image") |
|
|
|
|
|
#cv2.destroyWindow("threshhold image")""" |
|
|
|
|
|
|
|
|
|
|
|
# dilate the thresholded image to fill in holes |
|
|
|
|
|
thresh = cv2.dilate(thresh, None, iterations=2) |
|
|
|
|
|
|
|
|
|
|
|
# find contours on thresholded image |
|
|
|
|
|
thresh = np.uint8(thresh) |
|
|
|
|
|
cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
|
|
|
|
|
|
|
return cnts |
|
|
|
|
|
|
|
|
|
|
|
def detectConfidentiallyPeople(self, i, detections, boundRect): |
|
|
|
|
|
CLASSES = ["person"] |
|
|
|
|
|
|
|
|
|
|
|
COLORS = [0,255,0] |
|
|
|
|
|
#COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) |
|
|
|
|
|
|
|
|
|
|
|
confidence = detections[0, 0, i, 2] |
|
|
|
|
|
|
|
|
|
|
|
if confidence > self.confidence_level: |
|
|
|
|
|
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of |
|
|
|
|
|
# the bounding box for the object |
|
|
|
|
|
#idx = int(detections[0, 0, i, 1]) |
|
|
|
|
|
box = detections[0, 0, i, 3:7] * np.array([boundRect[2], boundRect[3], boundRect[2], boundRect[3]]) |
|
|
|
|
|
(startX, startY, endX, endY) = box.astype("int") |
|
|
|
|
|
# draw the prediction on the frame |
|
|
|
|
|
|
|
|
|
|
|
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) |
|
|
|
|
|
label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100) |
|
|
|
|
|
|
|
|
|
|
|
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2) |
|
|
|
|
|
cv2.rectangle(self.currentFrame, (boundRect[0], boundRect[1]), |
|
|
|
|
|
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (0,255, 0), 3) |
|
|
|
|
|
|
|
|
|
|
|
y = boundRect[1] - 15 if boundRect[1] - 15 > 15 else boundRect[1] + 15 |
|
|
|
|
|
|
|
|
|
|
|
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) |
|
|
|
|
|
cv2.putText(self.currentFrame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1) |
|
|
|
|
|
#cv2.imshow("Video stream", self.currentFrame) |
|
|
|
|
|
#print("Person found") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
main() |