Refactor video_presence to class
This commit is contained in:
parent
71a00d4642
commit
91256c65fe
3
camera/.vscode/launch.json
vendored
3
camera/.vscode/launch.json
vendored
@ -1,6 +1,7 @@
|
||||
{
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
@ -15,7 +16,7 @@
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"args": ["-v", "~/Videos/video.h264"]
|
||||
"args": ["-v", "run.mp4"]
|
||||
}
|
||||
]
|
||||
}
|
168
camera/person_detection.py
Executable file
168
camera/person_detection.py
Executable file
@ -0,0 +1,168 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from imutils.video import VideoStream
|
||||
from imutils.video import FPS
|
||||
import argparse
|
||||
import imutils
|
||||
import cv2
|
||||
from datetime import datetime, time
|
||||
import numpy as np
|
||||
import time as time2
|
||||
|
||||
VISUAL_DEBUG=True
|
||||
|
||||
def getArgs():
|
||||
""" Arguments """
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-v", "--video", help="path to the video file")
|
||||
ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
|
||||
ap.add_argument("-t", "--tracker", type=str, default="csrt", help="OpenCV object tracker type")
|
||||
return vars(ap.parse_args())
|
||||
|
||||
|
||||
def main():
|
||||
args = getArgs()
|
||||
|
||||
# if the video argument is None, then the code will read from webcam (work in progress)
|
||||
if args.get("video", None) is None:
|
||||
vs = VideoStream(src=0).start()
|
||||
time2.sleep(2.0)
|
||||
# otherwise, we are reading from a video file
|
||||
else:
|
||||
vs = cv2.VideoCapture(args["video"])
|
||||
|
||||
cv2.namedWindow('Video stream', cv2.WINDOW_NORMAL)
|
||||
detector = DetectionFromFrame(args["min_area"], 0.8)
|
||||
while True:
|
||||
detector.currentFrame = vs.read()
|
||||
detector.currentFrame = detector.currentFrame if args.get("video", None) is None else detector.currentFrame[1]
|
||||
# if the frame can not be grabbed, then we have reached the end of the video
|
||||
if detector.currentFrame is None:
|
||||
break
|
||||
|
||||
# resize the frame to 500
|
||||
detector.currentFrame = imutils.resize(detector.currentFrame, width=500)
|
||||
detector.framecounter+=1
|
||||
if detector.framecounter > 1:
|
||||
cnts = detector.prepareFrame()
|
||||
|
||||
for c in cnts:
|
||||
boundRect = cv2.boundingRect(c)
|
||||
#(x, y, w, h) = cv2.boundingRect(c)
|
||||
#initBB2 =(x,y,w,h)
|
||||
|
||||
prott1 = r'ML-Models/MobileNetSSD_deploy.prototxt'
|
||||
prott2 = r'ML-Models/MobileNetSSD_deploy.caffemodel'
|
||||
net = cv2.dnn.readNetFromCaffe(prott1, prott2)
|
||||
|
||||
#trackbox = detector.currentFrame[y:y+h, x:x+w]boundRect[1]
|
||||
trackbox = detector.currentFrame[boundRect[1]:boundRect[1]+boundRect[3],
|
||||
boundRect[0]:boundRect[0]+boundRect[2]]
|
||||
trackbox = cv2.resize(trackbox, (224, 224))
|
||||
#cv2.imshow('image',trackbox)
|
||||
|
||||
blob = cv2.dnn.blobFromImage(cv2.resize(trackbox, (300, 300)),0.007843, (300, 300), 127.5)
|
||||
net.setInput(blob)
|
||||
detections = net.forward()
|
||||
|
||||
for i in np.arange(0, detections.shape[2]):
|
||||
detector.detectConfidentiallyPeople(i, detections, boundRect)
|
||||
cv2.rectangle(detector.currentFrame, (boundRect[0], boundRect[1]),
|
||||
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (255, 255, 0), 1)
|
||||
|
||||
|
||||
# show the frame and record if the user presses a key
|
||||
cv2.imshow("Video stream", detector.currentFrame)
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
|
||||
# if the `q` key is pressed, break from the lop
|
||||
if key == ord("q"):
|
||||
break
|
||||
if key == ord("d"):
|
||||
detector.firstFrame = None
|
||||
#detector.lastFrame = detector.currentFrame
|
||||
|
||||
# finally, stop the camera/stream and close any open windows
|
||||
vs.stop() if args.get("video", None) is None else vs.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
class DetectionFromFrame:
|
||||
def __init__(self, min_size, confidence):
|
||||
self.min_size = min_size
|
||||
self.confidence_level = confidence
|
||||
|
||||
self.firstFrame = None
|
||||
self.currentFrame = None
|
||||
|
||||
self.initBB2 = None
|
||||
self.fps = None
|
||||
self.differ = None
|
||||
self.now = ''
|
||||
self.framecounter = 0
|
||||
self.people_count_total = 0
|
||||
|
||||
|
||||
def prepareFrame(self):
|
||||
gray = cv2.cvtColor(self.currentFrame, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
# if the first frame is None, initialize it
|
||||
if self.firstFrame is None:
|
||||
self.firstFrame = gray
|
||||
return []
|
||||
|
||||
# compute the absolute difference between the current frame and first frame
|
||||
frameDelta = cv2.absdiff(self.firstFrame, gray)
|
||||
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
#debug
|
||||
"""if VISUAL_DEBUG:
|
||||
cv2.imshow("debug image", thresh)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("debug image")
|
||||
#cv2.destroyWindow("threshhold image")"""
|
||||
|
||||
# dilate the thresholded image to fill in holes
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
|
||||
# find contours on thresholded image
|
||||
thresh = np.uint8(thresh)
|
||||
cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
return cnts
|
||||
|
||||
def detectConfidentiallyPeople(self, i, detections, boundRect):
|
||||
CLASSES = ["person"]
|
||||
|
||||
COLORS = [0,255,0]
|
||||
#COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
||||
|
||||
confidence = detections[0, 0, i, 2]
|
||||
|
||||
if confidence > self.confidence_level:
|
||||
# extract the index of the class label from the `detections`, then compute the (x, y)-coordinates of
|
||||
# the bounding box for the object
|
||||
#idx = int(detections[0, 0, i, 1])
|
||||
box = detections[0, 0, i, 3:7] * np.array([boundRect[2], boundRect[3], boundRect[2], boundRect[3]])
|
||||
(startX, startY, endX, endY) = box.astype("int")
|
||||
# draw the prediction on the frame
|
||||
|
||||
#label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
|
||||
label = "{}: {:.2f}%".format(CLASSES[0], confidence * 100)
|
||||
|
||||
#cv2.rectangle(frame, (startX, startY), (endX, endY), COLORS[idx], 2)
|
||||
cv2.rectangle(self.currentFrame, (boundRect[0], boundRect[1]),
|
||||
(boundRect[0] + boundRect[2], boundRect[1] + boundRect[3]), (0,255, 0), 3)
|
||||
|
||||
y = boundRect[1] - 15 if boundRect[1] - 15 > 15 else boundRect[1] + 15
|
||||
|
||||
#cv2.putText(frame, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
|
||||
cv2.putText(self.currentFrame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1)
|
||||
#cv2.imshow("Video stream", self.currentFrame)
|
||||
#print("Person found")
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -7,4 +7,5 @@ while True: # show streamed images until Ctrl-C
|
||||
rpi_name, image = image_hub.recv_image()
|
||||
cv2.imshow(rpi_name, image) # 1 window for each RPi
|
||||
cv2.waitKey(1)
|
||||
image_hub.send_reply(b'OK')
|
||||
image_hub.send_reply(b'OK')
|
||||
|
Loading…
x
Reference in New Issue
Block a user