Projekt_Dyschromasie/Code/Dyschromasie.py

94 lines
3.4 KiB
Python
Raw Normal View History

import cv2 # OpenCV fuer Bildbearbeitung
import tkinter # Zum Erstellen von GUIs
import numpy as np # Numpy Import
import sys
from PIL import Image, ImageTk #Wichtig zum Anzeigen der Bilder im GUI
# Einlesen des Bildes
script_dir = sys.path[0]
path = script_dir[:-4] + "Beispielbilder\grocery_store.jpg"
image = cv2.cvtColor(cv2.imread(path),cv2.COLOR_BGR2RGB) # Einlesen des Bildes (noch hardcodiert, sollte dann in GUI gehen)
rows = image.shape[0] # Auslesen der Zeilenanzahl
cols = image.shape[1] # Auslesen der Spaltenanzahl
kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
def gammaCorrection(v):
if v <= 0.04045 * 255:
return float(((v / 255) / 12.92))
elif v > 0.04045 * 255:
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
else:
print("Ungültiger Wert!!")
return 1
def reverseGammaCorrection(v_reverse):
if v_reverse <= 0.0031308:
return int(255 * (12.92 * v_reverse))
elif v_reverse > 0.0031308:
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
else:
print("Ungültiger Wert!!!")
return 1
2020-06-09 16:16:37 +02:00
cb_image = np.copy(image) # Kopie des Bildarrays
cb_image = cb_image.astype('float64') # Casting des Arrays auf Float
# Korrektur des Gamma Faktors für alle Bildelemente
for i in range(rows):
for j in range(cols):
for x in range(3):
cb_image[i, j, x] = gammaCorrection(float(image[i, j, x]))
'''
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
0.01775239 0.10944209 0.87256922 T*RGB_Farbverktor = LMS_Farbvektor
'''
T = np.array([[0.31399022, 0.63951294, 0.04649755],
[0.15537241, 0.75789446, 0.08670142],
[0.01775239, 0.10944209, 0.87256922]])
'''
5.47221206 4.6419601 0.16963708 Rücktransformationsmatrix (Inverse von T)
T_reversed = -1.1252419 2.29317094 0.1678952 T_reversed Ü LMS_Farbvektor = RBG_Farbvektor
0.02980165 0.19318073 1.16364789
'''
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
[-1.1252419, 2.29317094, -0.1678952],
[0.02980165, -0.19318073, 1.16364789]])
S_p = np.array([[0, 1.05118294, -0.05116099], #Simulationsmatrix fuer Protanopie
[0, 1, 0],
[0, 0, 1]])
S_d = np.array([[1, 0, 0], #Simulationsmatrix fuer Deuteranopie
[0.9513092, 0, 0.04866992],
[0, 0, 1]])
S_t = np.array([[1, 0, 0], #Simulationsmatrix fuer Tritanopie
[0, 1, 0],
[-0.86744736, 1.86727089, 0]])
#Multiplikation der einzelnen Pixel
for i in range(rows):
for j in range(cols):
cb_image[i,j] = T_reversed.dot(S_p).dot(T).dot(cb_image[i,j])
sim_image = np.copy(cb_image)
sim_image = sim_image.astype('uint8')
#Rücktransformation der Gammawerte
for i in range(rows):
for j in range(cols):
for x in range(3):
sim_image[i, j, x] = reverseGammaCorrection(cb_image[i, j, x])
2020-06-17 10:47:09 +02:00
cv2.namedWindow("Display") # Displaywindow erstellen
cv2.imshow("Display", cv2.cvtColor(sim_image,cv2.COLOR_RGB2BGR)) # Bild zeigen
cv2.waitKey(0) # Fenster offen halten