signal next_task_state : work.task.State; | signal next_task_state : work.task.State; | ||||
signal index : integer range 0 to work.task.STREAM_LEN; | signal index : integer range 0 to work.task.STREAM_LEN; | ||||
-- Zustände für die Zustandsmaschine zur Berechnung | |||||
type SigState is ( | |||||
SIG_IDLE, | |||||
SIG_READ, | |||||
SIG_ADD, | |||||
SIG_WRITE | |||||
); | |||||
signal current_sig_state : SigState; | |||||
signal next_sig_state : SigState; | |||||
signal signal_add_start : std_logic; | |||||
signal signal_add_done : std_logic; | |||||
begin | begin | ||||
u_float_add : entity work.float_add | |||||
port map( | |||||
clk => clk, | |||||
reset => reset, | |||||
start => signal_add_start, | |||||
done => signal_add_done, | |||||
A => signal_a_readdata, | |||||
B => signal_b_readdata, | |||||
sum => signal_writedata | |||||
); | |||||
task_state_transitions : process ( current_task_state, task_start, index ) is | task_state_transitions : process ( current_task_state, task_start, index ) is | ||||
begin | begin | ||||
next_task_state <= current_task_state; | next_task_state <= current_task_state; | ||||
next_task_state <= work.task.TASK_RUNNING; | next_task_state <= work.task.TASK_RUNNING; | ||||
end if; | end if; | ||||
when work.task.TASK_RUNNING => | when work.task.TASK_RUNNING => | ||||
if ( index = work.task.STREAM_LEN - 1 ) then | |||||
if ( index = work.task.STREAM_LEN) then | |||||
next_task_state <= work.task.TASK_DONE; | next_task_state <= work.task.TASK_DONE; | ||||
end if; | end if; | ||||
when work.task.TASK_DONE => | when work.task.TASK_DONE => | ||||
end case; | end case; | ||||
end process task_state_transitions; | end process task_state_transitions; | ||||
sync : process ( clk, reset ) is | |||||
sig_state_transitions : process (all) is | |||||
begin | |||||
next_sig_state <= current_sig_state; | |||||
case current_sig_state is | |||||
when SIG_IDLE => | |||||
if ( current_task_state = work.task.TASK_RUNNING ) then | |||||
next_sig_state <= SIG_READ; | |||||
end if; | |||||
when SIG_READ => | |||||
next_sig_state <= SIG_ADD; | |||||
when SIG_ADD => | |||||
if ( signal_add_done = '1') then | |||||
next_sig_state <= SIG_WRITE; | |||||
end if; | |||||
when SIG_WRITE => | |||||
next_sig_state <= SIG_IDLE; | |||||
end case; | |||||
end process sig_state_transitions; | |||||
task_sync : process ( clk, reset ) is | |||||
begin | begin | ||||
if ( reset = '1' ) then | if ( reset = '1' ) then | ||||
current_task_state <= work.task.TASK_IDLE; | current_task_state <= work.task.TASK_IDLE; | ||||
index <= 0; | |||||
--index <= 0; | |||||
elsif ( rising_edge( clk ) ) then | elsif ( rising_edge( clk ) ) then | ||||
current_task_state <= next_task_state; | current_task_state <= next_task_state; | ||||
case next_task_state is | case next_task_state is | ||||
when work.task.TASK_IDLE => | when work.task.TASK_IDLE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
null; | |||||
-- signal_write <= '0'; | |||||
when work.task.TASK_RUNNING => | when work.task.TASK_RUNNING => | ||||
index <= index + 1; | |||||
signal_write <= '1'; | |||||
signal_writedata <= ( others => '0' ); | |||||
null; | |||||
-- signal_write <= '1'; | |||||
-- signal_writedata <= ( others => '0' ); | |||||
when work.task.TASK_DONE => | when work.task.TASK_DONE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
null; | |||||
-- signal_write <= '0'; | |||||
end case; | |||||
end if; | |||||
end process task_sync; | |||||
sync : process (all) is | |||||
begin | |||||
if ( reset = '1' ) then | |||||
current_sig_state <= SIG_IDLE; | |||||
index <= 0; | |||||
signal_a_read <= '0'; | |||||
signal_b_read <= '0'; | |||||
signal_add_start <= '0'; | |||||
signal_write <= '0'; | |||||
elsif ( rising_edge( clk ) ) then | |||||
current_sig_state <= next_sig_state; | |||||
signal_write <= '0'; | |||||
signal_a_read <= '0'; | |||||
signal_b_read <= '0'; | |||||
case next_sig_state is | |||||
when SIG_IDLE => | |||||
if (index = 0) then | |||||
current_sig_state <= SIG_ADD; | |||||
end if; | |||||
when SIG_READ => | |||||
signal_a_read <= '1'; | |||||
signal_b_read <= '1'; | |||||
when SIG_ADD => | |||||
signal_add_start <= '1'; | |||||
when SIG_WRITE => | |||||
signal_add_start <= '0'; | |||||
signal_write <= '1'; | |||||
index <= index + 1; | |||||
end case; | end case; | ||||
end if; | end if; | ||||
end process sync; | end process sync; |
use work.task.all; | use work.task.all; | ||||
use work.float.all; | use work.float.all; | ||||
entity fft is | entity fft is | ||||
generic ( | generic ( | ||||
); | ); | ||||
end entity fft; | end entity fft; | ||||
architecture rtl of fft is | architecture rtl of fft is | ||||
signal current_task_state : work.task.State; | signal current_task_state : work.task.State; | ||||
signal next_task_state : work.task.State; | signal next_task_state : work.task.State; | ||||
signal index : integer range 0 to work.task.STREAM_LEN; | signal index : integer range 0 to work.task.STREAM_LEN; | ||||
component fftmain is | |||||
-- generic( width : integer := 32 | |||||
--); | |||||
port( | |||||
clock: in std_logic; | |||||
reset: in std_logic; | |||||
di_en: in std_logic; | |||||
di_re: in std_logic_vector(input_data_width-1 downto 0); | |||||
di_im: in std_logic_vector(input_data_width-1 downto 0); | |||||
do_en: out std_logic; | |||||
do_re: out std_logic_vector(output_data_width-1 downto 0); | |||||
do_im: out std_logic_vector(output_data_width-1 downto 0) | |||||
); | |||||
end component; | |||||
-- Zustände für die Zustandsmaschine zur Berechnung | |||||
type SigState is ( | |||||
SIG_IDLE, | |||||
SIG_READ, | |||||
SIG_FFTMAIN, | |||||
SIG_FFTMAG, | |||||
SIG_WRITE | |||||
); | |||||
signal current_sig_state : SigState; | |||||
signal next_sig_state : SigState; | |||||
signal fftmain_start : std_logic; | |||||
signal fftmain_done : std_logic; | |||||
signal fftmag_start : std_logic; | |||||
signal fftmag_done : std_logic; | |||||
signal fftmain_out_re : std_logic_vector( 31 downto 0 ); | |||||
signal fftmain_out_im : std_logic_vector( 31 downto 0 ); | |||||
signal exp : std_logic_vector( 7 downto 0); | |||||
signal scaled_exp : std_logic_vector( 7 downto 0); | |||||
signal scaled_readdata : std_logic_vector( 31 downto 0); | |||||
signal exp_int : integer; | |||||
signal scaled_data_fixp : std_logic_vector(31 downto 0); | |||||
signal exp2 : std_logic_vector( 7 downto 0); | |||||
signal scaled_exp2 : std_logic_vector( 7 downto 0); | |||||
signal exp_int2 : integer; | |||||
signal magnitude_output : std_logic_vector( 31 downto 0 ); | |||||
signal writedata_float : std_logic_vector( 31 downto 0 ); | |||||
type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0); | |||||
signal my_array : std_logic_vector_array; | |||||
begin | begin | ||||
exp <= signal_readdata( 30 downto 23 ); | |||||
exp_int <= to_integer(unsigned(exp)); | |||||
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8)); | |||||
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 ); | |||||
scaled_data_fixp <= to_fixed(scaled_readdata); | |||||
writedata_float <= to_float(magnitude_output); | |||||
exp2 <= writedata_float( 30 downto 23 ); | |||||
exp_int2 <= to_integer(unsigned(exp2)); | |||||
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8)); | |||||
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 ); | |||||
signal_writedata <= my_array(index); | |||||
u_fft : fftmain | |||||
port map ( | |||||
clock => clk, | |||||
reset => reset, | |||||
di_en => fftmain_start, | |||||
di_re => scaled_data_fixp, | |||||
di_im => x"00000000", | |||||
do_en => fftmain_done, | |||||
do_re => fftmain_out_re, | |||||
do_im => fftmain_out_im | |||||
); | |||||
u_fft_mag_calc : entity work.fft_magnitude_calc | |||||
port map ( | |||||
clk => clk, | |||||
reset => reset, | |||||
input_valid => fftmag_start, | |||||
input_re => fftmain_out_re, | |||||
input_im => fftmain_out_im, | |||||
output_valid => fftmag_done, | |||||
output_magnitude => magnitude_output | |||||
); | |||||
task_state_transitions : process ( current_task_state, task_start, index ) is | task_state_transitions : process ( current_task_state, task_start, index ) is | ||||
begin | begin | ||||
next_task_state <= current_task_state; | next_task_state <= current_task_state; | ||||
end case; | end case; | ||||
end process task_state_transitions; | end process task_state_transitions; | ||||
sig_state_transitions : process (all) is | |||||
begin | |||||
next_sig_state <= current_sig_state; | |||||
case current_sig_state is | |||||
when SIG_IDLE => | |||||
if ( current_task_state = work.task.TASK_RUNNING ) then | |||||
next_sig_state <= SIG_READ; | |||||
end if; | |||||
when SIG_READ => | |||||
next_sig_state <= SIG_FFTMAIN; | |||||
when SIG_FFTMAIN => | |||||
if ( fftmain_done = '1') then | |||||
next_sig_state <= SIG_FFTMAG; | |||||
end if; | |||||
when SIG_FFTMAG => | |||||
if ( fftmain_done = '0') then | |||||
next_sig_state <= SIG_WRITE; | |||||
end if; | |||||
when SIG_WRITE => | |||||
null; | |||||
end case; | |||||
end process sig_state_transitions; | |||||
sync : process ( clk, reset ) is | sync : process ( clk, reset ) is | ||||
begin | begin | ||||
if ( reset = '1' ) then | if ( reset = '1' ) then | ||||
current_task_state <= work.task.TASK_IDLE; | current_task_state <= work.task.TASK_IDLE; | ||||
index <= 0; | |||||
elsif ( rising_edge( clk ) ) then | |||||
current_task_state <= next_task_state; | |||||
current_sig_state <= SIG_IDLE; | |||||
index <= 0; | |||||
signal_read <= '0'; | |||||
fftmain_start <= '0'; | |||||
fftmag_start <= '0'; | |||||
signal_write <= '0'; | |||||
elsif ( rising_edge( clk ) ) then | |||||
current_task_state <= next_task_state; | |||||
case next_task_state is | case next_task_state is | ||||
when work.task.TASK_IDLE => | when work.task.TASK_IDLE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
null; | |||||
when work.task.TASK_RUNNING => | when work.task.TASK_RUNNING => | ||||
index <= index + 1; | |||||
signal_write <= '1'; | |||||
signal_writedata <= ( others => '0' ); | |||||
null; | |||||
when work.task.TASK_DONE => | when work.task.TASK_DONE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
null; | |||||
end case; | |||||
current_sig_state <= next_sig_state; | |||||
case next_sig_state is | |||||
when SIG_IDLE => | |||||
signal_write <= '0'; | |||||
when SIG_READ => | |||||
signal_read <= '1'; | |||||
when SIG_FFTMAIN => | |||||
fftmain_start <= '1'; | |||||
when SIG_FFTMAG => | |||||
signal_read <= '0'; | |||||
fftmain_start <= '0'; | |||||
fftmag_start <= '1'; | |||||
signal_write <= '0'; | |||||
index <= index + 1; | |||||
when SIG_WRITE => | |||||
fftmag_start <= '0'; | |||||
signal_write <= '1'; | |||||
end case; | end case; | ||||
end if; | end if; | ||||
end process sync; | end process sync; |
int task_add_run( void * task ) { | int task_add_run( void * task ) { | ||||
// TODO | |||||
add_config * config = (add_config *) task; | |||||
float_word f; | |||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++) | |||||
{ | |||||
float a; | |||||
data_channel_read(config->sources[0], (uint32_t *) & a); | |||||
float b; | |||||
data_channel_read(config->sources[1], (uint32_t *) & b); | |||||
float_word c; | |||||
c.value = a + b; | |||||
f.value = c.value; | |||||
data_channel_write(config->sink, c.word); | |||||
} | |||||
return 0; | return 0; | ||||
} | } |
#include "system/data_channel.h" | #include "system/data_channel.h" | ||||
#include "system/Complex.h" | #include "system/Complex.h" | ||||
#include "system/float_word.h" | #include "system/float_word.h" | ||||
#include <math.h> | |||||
#include <complex.h> | |||||
#include <stdio.h> | |||||
int task_fft_run( void * task ) { | |||||
void fft_radix4(complex float *x) { | |||||
int n = DATA_CHANNEL_DEPTH; | |||||
int stages = log(n) / log(4); // Anzahl der FFT-Stufen | |||||
// TODO | |||||
// Bit-Reversal-Rearrangement (Umordnung der Daten für FFT) | |||||
for (int i = 0; i < n; i++) { | |||||
int rev = 0, num = i; | |||||
for (int bit = 0; bit < stages; bit++) { | |||||
rev = rev * 4 + (num % 4); | |||||
//printf("i: %d, rev: %d\n", i, rev); | |||||
num /= 4; | |||||
} | |||||
if (i < rev) { | |||||
complex float temp = x[i]; | |||||
x[i] = x[rev]; | |||||
x[rev] = temp; | |||||
} | |||||
} | |||||
// Radix-4 Butterfly-Berechnung | |||||
for (int s = 1; s <= stages; s++) { | |||||
int m = pow(4, s); // Gruppengröße (4^s) | |||||
int quarter_m = m / 4; // Viertel der Gruppengröße | |||||
float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit | |||||
//printf("Stage: %d, m: %d, theta: %f\n", s, m, theta); | |||||
for (int k = 0; k < n; k += m) { // Iteration über Gruppen | |||||
for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe | |||||
// Wurzeln der Einheit | |||||
complex float w0 = 1.0f; // Wurzel für j = 0 | |||||
complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1 | |||||
complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2 | |||||
complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3 | |||||
// Lade die Werte aus der Gruppe | |||||
complex float t0 = x[k + j]; | |||||
complex float t1 = x[k + j + quarter_m] * w1; | |||||
complex float t2 = x[k + j + 2 * quarter_m] * w2; | |||||
complex float t3 = x[k + j + 3 * quarter_m] * w3; | |||||
//printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3)); | |||||
//printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3)); | |||||
// Butterfly-Operationen | |||||
x[k + j] = t0 + t1 + t2 + t3; | |||||
x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2); | |||||
x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3; | |||||
x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2); | |||||
//printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m])); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
int task_fft_run(void *task) { | |||||
fft_config *config = (fft_config *)task; | |||||
complex float x[DATA_CHANNEL_DEPTH]; | |||||
float c[DATA_CHANNEL_DEPTH]; | |||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) { | |||||
float a; | |||||
data_channel_read(config->base.sources[0], (uint32_t *) &a); | |||||
x[i] = a; | |||||
//printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i])); | |||||
} | |||||
fft_radix4(x); | |||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) { | |||||
//printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i])); | |||||
c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag | |||||
if (i == 0) | |||||
c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung | |||||
else | |||||
c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung | |||||
printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]); | |||||
float_word output; | |||||
output.value = c[i]; | |||||
data_channel_write(config->base.sink, output.word); | |||||
} | |||||
return 0; | return 0; | ||||
} | } | ||||