Browse Source

Loesung Praktikum

master
faehrfe95012 2 days ago
parent
commit
e70d170be8

+ 89
- 10
hardware/signal_processing/add.vhd View File

signal next_task_state : work.task.State; signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN; signal index : integer range 0 to work.task.STREAM_LEN;


-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_ADD,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;

signal signal_add_start : std_logic;
signal signal_add_done : std_logic;


begin begin

u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => signal_add_start,
done => signal_add_done,
A => signal_a_readdata,
B => signal_b_readdata,
sum => signal_writedata
);

task_state_transitions : process ( current_task_state, task_start, index ) is task_state_transitions : process ( current_task_state, task_start, index ) is
begin begin
next_task_state <= current_task_state; next_task_state <= current_task_state;
next_task_state <= work.task.TASK_RUNNING; next_task_state <= work.task.TASK_RUNNING;
end if; end if;
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = work.task.STREAM_LEN) then
next_task_state <= work.task.TASK_DONE; next_task_state <= work.task.TASK_DONE;
end if; end if;
when work.task.TASK_DONE => when work.task.TASK_DONE =>
end case; end case;
end process task_state_transitions; end process task_state_transitions;


sync : process ( clk, reset ) is
sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_ADD;
when SIG_ADD =>
if ( signal_add_done = '1') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
next_sig_state <= SIG_IDLE;
end case;
end process sig_state_transitions;

task_sync : process ( clk, reset ) is
begin begin
if ( reset = '1' ) then if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE; current_task_state <= work.task.TASK_IDLE;
index <= 0;
--index <= 0;
elsif ( rising_edge( clk ) ) then elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state; current_task_state <= next_task_state;
case next_task_state is case next_task_state is
when work.task.TASK_IDLE => when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
null;
-- signal_write <= '0';
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
null;
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
when work.task.TASK_DONE => when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
null;
-- signal_write <= '0';
end case;
end if;
end process task_sync;

sync : process (all) is
begin
if ( reset = '1' ) then
current_sig_state <= SIG_IDLE;
index <= 0;
signal_a_read <= '0';
signal_b_read <= '0';
signal_add_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_sig_state <= next_sig_state;
signal_write <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
case next_sig_state is
when SIG_IDLE =>
if (index = 0) then
current_sig_state <= SIG_ADD;
end if;
when SIG_READ =>
signal_a_read <= '1';
signal_b_read <= '1';
when SIG_ADD =>
signal_add_start <= '1';
when SIG_WRITE =>
signal_add_start <= '0';
signal_write <= '1';
index <= index + 1;
end case; end case;
end if; end if;
end process sync; end process sync;

+ 145
- 10
hardware/signal_processing/fft.vhd View File

use work.task.all; use work.task.all;
use work.float.all; use work.float.all;



entity fft is entity fft is
generic ( generic (


); );
end entity fft; end entity fft;



architecture rtl of fft is architecture rtl of fft is


signal current_task_state : work.task.State; signal current_task_state : work.task.State;
signal next_task_state : work.task.State; signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN; signal index : integer range 0 to work.task.STREAM_LEN;


component fftmain is
-- generic( width : integer := 32
--);
port(
clock: in std_logic;
reset: in std_logic;
di_en: in std_logic;
di_re: in std_logic_vector(input_data_width-1 downto 0);
di_im: in std_logic_vector(input_data_width-1 downto 0);
do_en: out std_logic;
do_re: out std_logic_vector(output_data_width-1 downto 0);
do_im: out std_logic_vector(output_data_width-1 downto 0)
);
end component;

-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_FFTMAIN,
SIG_FFTMAG,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;

signal fftmain_start : std_logic;
signal fftmain_done : std_logic;
signal fftmag_start : std_logic;
signal fftmag_done : std_logic;
signal fftmain_out_re : std_logic_vector( 31 downto 0 );
signal fftmain_out_im : std_logic_vector( 31 downto 0 );
signal exp : std_logic_vector( 7 downto 0);
signal scaled_exp : std_logic_vector( 7 downto 0);
signal scaled_readdata : std_logic_vector( 31 downto 0);
signal exp_int : integer;
signal scaled_data_fixp : std_logic_vector(31 downto 0);

signal exp2 : std_logic_vector( 7 downto 0);
signal scaled_exp2 : std_logic_vector( 7 downto 0);
signal exp_int2 : integer;

signal magnitude_output : std_logic_vector( 31 downto 0 );
signal writedata_float : std_logic_vector( 31 downto 0 );

type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0);
signal my_array : std_logic_vector_array;


begin begin

exp <= signal_readdata( 30 downto 23 );
exp_int <= to_integer(unsigned(exp));
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8));
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 );
scaled_data_fixp <= to_fixed(scaled_readdata);

writedata_float <= to_float(magnitude_output);
exp2 <= writedata_float( 30 downto 23 );
exp_int2 <= to_integer(unsigned(exp2));
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8));
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 );
signal_writedata <= my_array(index);
u_fft : fftmain
port map (
clock => clk,
reset => reset,
di_en => fftmain_start,
di_re => scaled_data_fixp,
di_im => x"00000000",
do_en => fftmain_done,
do_re => fftmain_out_re,
do_im => fftmain_out_im
);

u_fft_mag_calc : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => fftmag_start,
input_re => fftmain_out_re,
input_im => fftmain_out_im,
output_valid => fftmag_done,
output_magnitude => magnitude_output
);

task_state_transitions : process ( current_task_state, task_start, index ) is task_state_transitions : process ( current_task_state, task_start, index ) is
begin begin
next_task_state <= current_task_state; next_task_state <= current_task_state;
end case; end case;
end process task_state_transitions; end process task_state_transitions;


sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_FFTMAIN;
when SIG_FFTMAIN =>
if ( fftmain_done = '1') then
next_sig_state <= SIG_FFTMAG;
end if;
when SIG_FFTMAG =>
if ( fftmain_done = '0') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
null;
end case;
end process sig_state_transitions;

sync : process ( clk, reset ) is sync : process ( clk, reset ) is
begin begin
if ( reset = '1' ) then if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE; current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
current_sig_state <= SIG_IDLE;
index <= 0;
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is case next_task_state is
when work.task.TASK_IDLE => when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
null;
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
null;
when work.task.TASK_DONE => when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
null;
end case;

current_sig_state <= next_sig_state;
case next_sig_state is
when SIG_IDLE =>
signal_write <= '0';
when SIG_READ =>
signal_read <= '1';
when SIG_FFTMAIN =>
fftmain_start <= '1';
when SIG_FFTMAG =>
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '1';
signal_write <= '0';
index <= index + 1;
when SIG_WRITE =>
fftmag_start <= '0';
signal_write <= '1';
end case; end case;
end if; end if;
end process sync; end process sync;

+ 17
- 1
software/signal_processing/add.c View File



int task_add_run( void * task ) { int task_add_run( void * task ) {


// TODO
add_config * config = (add_config *) task;
float_word f;

for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; i++)
{
float a;
data_channel_read(config->sources[0], (uint32_t *) & a);
float b;
data_channel_read(config->sources[1], (uint32_t *) & b);

float_word c;
c.value = a + b;
f.value = c.value;
data_channel_write(config->sink, c.word);
}


return 0; return 0;
} }

+ 87
- 2
software/signal_processing/fft.c View File

#include "system/data_channel.h" #include "system/data_channel.h"
#include "system/Complex.h" #include "system/Complex.h"
#include "system/float_word.h" #include "system/float_word.h"
#include <math.h>
#include <complex.h>
#include <stdio.h>


int task_fft_run( void * task ) {
void fft_radix4(complex float *x) {
int n = DATA_CHANNEL_DEPTH;
int stages = log(n) / log(4); // Anzahl der FFT-Stufen


// TODO
// Bit-Reversal-Rearrangement (Umordnung der Daten für FFT)
for (int i = 0; i < n; i++) {
int rev = 0, num = i;
for (int bit = 0; bit < stages; bit++) {
rev = rev * 4 + (num % 4);
//printf("i: %d, rev: %d\n", i, rev);
num /= 4;
}
if (i < rev) {
complex float temp = x[i];
x[i] = x[rev];
x[rev] = temp;
}
}


// Radix-4 Butterfly-Berechnung
for (int s = 1; s <= stages; s++) {
int m = pow(4, s); // Gruppengröße (4^s)
int quarter_m = m / 4; // Viertel der Gruppengröße
float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit
//printf("Stage: %d, m: %d, theta: %f\n", s, m, theta);

for (int k = 0; k < n; k += m) { // Iteration über Gruppen
for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe
// Wurzeln der Einheit
complex float w0 = 1.0f; // Wurzel für j = 0
complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1
complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2
complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3

// Lade die Werte aus der Gruppe
complex float t0 = x[k + j];
complex float t1 = x[k + j + quarter_m] * w1;
complex float t2 = x[k + j + 2 * quarter_m] * w2;
complex float t3 = x[k + j + 3 * quarter_m] * w3;
//printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3));

//printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3));
// Butterfly-Operationen
x[k + j] = t0 + t1 + t2 + t3;
x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2);
x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3;
x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2);
//printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m]));
}
}
}
}



int task_fft_run(void *task) {

fft_config *config = (fft_config *)task;
complex float x[DATA_CHANNEL_DEPTH];
float c[DATA_CHANNEL_DEPTH];
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
float a;
data_channel_read(config->base.sources[0], (uint32_t *) &a);
x[i] = a;
//printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
}

fft_radix4(x);

for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
//printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i]));
c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag
if (i == 0)
c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung
else
c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung
printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]);

float_word output;
output.value = c[i];

data_channel_write(config->base.sink, output.word);
}
return 0; return 0;
} }




Loading…
Cancel
Save