generated from freudenreichan/info2Praktikum-DobleSpiel
Compare commits
6 Commits
main
...
Lukas_bran
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6b66a6c31a | ||
|
|
aa83f84a21 | ||
|
|
1389fcc864 | ||
|
|
918ae1d61e | ||
|
|
7ce362eb8b | ||
|
|
8b09fec7b2 |
154
bintree.c
154
bintree.c
@ -8,29 +8,177 @@
|
|||||||
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
||||||
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
//Hilfsfunktion für addToTree. Erstellt eine treenode.
|
||||||
|
static TreeNode* createTreeNode(const void *data, size_t dataSize)
|
||||||
|
{
|
||||||
|
TreeNode* newNode = calloc(1, sizeof(TreeNode));
|
||||||
|
if(!newNode)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
newNode ->data = malloc(dataSize);
|
||||||
|
if(!newNode->data)
|
||||||
|
{
|
||||||
|
free(newNode);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
memcpy(newNode -> data, data, dataSize);
|
||||||
|
return newNode;
|
||||||
|
}
|
||||||
|
|
||||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
||||||
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added). (auf 1 wenn duplikat geaddet)
|
||||||
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
||||||
{
|
{
|
||||||
|
if(!root)
|
||||||
|
{
|
||||||
|
TreeNode *newNode = createTreeNode(data, dataSize);
|
||||||
|
if(isDuplicate != NULL)
|
||||||
|
{
|
||||||
|
*isDuplicate = 0;
|
||||||
}
|
}
|
||||||
|
return newNode;
|
||||||
|
}
|
||||||
|
int compare = compareFct(data, root-> data);
|
||||||
|
if(compare < 0)
|
||||||
|
{
|
||||||
|
root -> left = addToTree(root -> left, data, dataSize, compareFct, isDuplicate);
|
||||||
|
}
|
||||||
|
else if(compare > 0)
|
||||||
|
{
|
||||||
|
root -> right = addToTree(root -> right, data, dataSize, compareFct, isDuplicate);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if(isDuplicate != NULL)
|
||||||
|
{
|
||||||
|
*isDuplicate = 1;
|
||||||
|
return root;
|
||||||
|
}
|
||||||
|
//Konvention: rechts ist >= also das Duplikat wird nach rechts verfrachtet.
|
||||||
|
root -> right = addToTree(root -> right, data, dataSize, compareFct, isDuplicate);
|
||||||
|
}
|
||||||
|
return root;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
||||||
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
||||||
// push the top node and push all its left nodes.
|
// push the top node and push all its left nodes.
|
||||||
|
// Wir brauchen eine statische Variable, die überdauernd existiert
|
||||||
|
// (Alternativ kann man diese auch global ausserhalb definieren)
|
||||||
|
// Die statische Variable (das Gedächtnis) muss außerhalb oder static innerhalb sein
|
||||||
|
|
||||||
|
/*
|
||||||
|
* nextTreeData - Iterative In-Order Traversierung (wie strtok)
|
||||||
|
* * Funktionsweise:
|
||||||
|
* 1. Initialisierung (root != NULL):
|
||||||
|
* - Löscht alten Stack.
|
||||||
|
* - Wandert von root so weit nach LINKS wie möglich.
|
||||||
|
* - Pushed alle Knoten auf dem Weg auf den Stack.
|
||||||
|
* -> Das kleinste Element liegt nun oben.
|
||||||
|
* * 2. Iteration (root == NULL):
|
||||||
|
* - Pop: Nimmt oberstes Element vom Stack (aktuell kleinstes).
|
||||||
|
* - Logik: Hat dieses Element einen RECHTEN Nachbarn?
|
||||||
|
* -> JA: Gehe eins nach rechts, dann wieder alles nach LINKS pushen.
|
||||||
|
* -> NEIN: Nichts tun (der Elternknoten liegt schon als nächstes auf dem Stack).
|
||||||
|
* - Gibt die Daten des gepoppten Elements zurück.
|
||||||
|
*/
|
||||||
|
static StackNode *iteratorStack = NULL;
|
||||||
|
|
||||||
void *nextTreeData(TreeNode *root)
|
void *nextTreeData(TreeNode *root)
|
||||||
{
|
{
|
||||||
|
//neuer Baum wird übergeben (root != NULL)
|
||||||
|
if (root != NULL)
|
||||||
|
{
|
||||||
|
// 1. Aufräumen: Falls noch Reste vom letzten Mal da sind
|
||||||
|
if (iteratorStack != NULL) {
|
||||||
|
clearStack(iteratorStack);
|
||||||
|
iteratorStack = NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 2. Initial befüllen: "Push root and all left nodes"
|
||||||
|
TreeNode *currentNode = root;
|
||||||
|
while (currentNode != NULL)
|
||||||
|
{
|
||||||
|
|
||||||
|
iteratorStack = push(iteratorStack, currentNode);
|
||||||
|
|
||||||
|
// Immer weiter nach links absteigen
|
||||||
|
currentNode = currentNode->left;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// PHASE 2: Iteration (Nächsten Wert holen)
|
||||||
|
|
||||||
|
// Wenn der Stack leer ist (oder leer war), sind wir fertig.
|
||||||
|
if (iteratorStack == NULL)
|
||||||
|
{
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 1. Wir schauen uns das oberste Element an (der nächste Knoten in der Reihe)
|
||||||
|
// Wir wissen, dass es ein TreeNode* ist, also casten wir.
|
||||||
|
TreeNode *nodeToReturn = (TreeNode*) top(iteratorStack);
|
||||||
|
|
||||||
|
// 2. Wir entfernen ihn vom Stack (er ist jetzt "verarbeitet")
|
||||||
|
// Auch hier: pop gibt den neuen Head zurück, also variable aktualisieren!
|
||||||
|
iteratorStack = pop(iteratorStack);
|
||||||
|
|
||||||
|
// 3. Wir retten die Nutzer-Daten (z.B. den Integer), bevor wir weiterwandern
|
||||||
|
void *userData = nodeToReturn->data;
|
||||||
|
|
||||||
|
// 4. Nachfolger suchen (Die Logik für In-Order: Rechts, dann alles links)
|
||||||
|
if (nodeToReturn->right != NULL)
|
||||||
|
{
|
||||||
|
TreeNode *currentNode = nodeToReturn->right;
|
||||||
|
while (currentNode != NULL)
|
||||||
|
{
|
||||||
|
// Auch hier: Stack aktualisieren
|
||||||
|
iteratorStack = push(iteratorStack, currentNode);
|
||||||
|
currentNode = currentNode->left;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Wir geben die echten Daten zurück (nicht den Knoten, sondern den Inhalt)
|
||||||
|
return userData;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Releases all memory resources (including data copies).
|
// Releases all memory resources (including data copies).
|
||||||
|
|
||||||
|
// Gibt den gesamten Speicher (Knoten + Daten) frei
|
||||||
void clearTree(TreeNode *root)
|
void clearTree(TreeNode *root)
|
||||||
{
|
{
|
||||||
|
if (root)
|
||||||
|
{
|
||||||
|
// 2. Rekursion: Erst tief in den Baum absteigen (Post-Order)
|
||||||
|
clearTree(root->left);
|
||||||
|
clearTree(root->right);
|
||||||
|
|
||||||
|
// 3. Jetzt sind die Kinder weg. Wir kümmern uns um den aktuellen Knoten.
|
||||||
|
|
||||||
|
// Erst den Inhalt (die Datenkopie) löschen!
|
||||||
|
// (free(NULL) ist in C erlaubt, daher müssen wir nicht zwingend auf NULL prüfen,
|
||||||
|
// aber es schadet auch nicht).
|
||||||
|
free(root->data);
|
||||||
|
|
||||||
|
// 4. Dann den Container (den Knoten selbst) löschen
|
||||||
|
free(root);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the number of entries in the tree given by root.
|
// Returns the number of entries in the tree given by root.
|
||||||
unsigned int treeSize(const TreeNode *root)
|
unsigned int treeSize(const TreeNode *root)
|
||||||
{
|
{
|
||||||
|
// Abbruchbedingung: Wenn kein Knoten da ist, ist die Größe 0
|
||||||
|
if (root == NULL)
|
||||||
|
{
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rekursionsschritt:
|
||||||
|
// 1 (für den aktuellen Knoten) + alles im linken Baum + alles im rechten Baum
|
||||||
|
return 1 + treeSize(root->left) + treeSize(root->right);
|
||||||
}
|
}
|
||||||
@ -5,11 +5,11 @@
|
|||||||
|
|
||||||
typedef int (*CompareFctType)(const void *arg1, const void *arg2);
|
typedef int (*CompareFctType)(const void *arg1, const void *arg2);
|
||||||
|
|
||||||
typedef struct node
|
typedef struct treenode
|
||||||
{
|
{
|
||||||
void *data;
|
void *data;
|
||||||
struct node *left;
|
struct treenode *left;
|
||||||
struct node *right;
|
struct treenode *right;
|
||||||
} TreeNode;
|
} TreeNode;
|
||||||
|
|
||||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
||||||
|
|||||||
21
makefile
21
makefile
@ -29,21 +29,32 @@ program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
|
|||||||
doble : main.o $(program_obj_files)
|
doble : main.o $(program_obj_files)
|
||||||
$(CC) $(FLAGS) $^ -o doble
|
$(CC) $(FLAGS) $^ -o doble
|
||||||
|
|
||||||
$(program_obj_filesobj_files): %.o: %.c
|
$(program_obj_files): %.o: %.c
|
||||||
$(CC) -c $(FLAGS) $^ -o $@
|
$(CC) -c $(FLAGS) $^ -o $@
|
||||||
|
|
||||||
# --------------------------
|
# --------------------------
|
||||||
# Unit Tests
|
# Unit Tests
|
||||||
# --------------------------
|
# --------------------------
|
||||||
unitTests:
|
# Test Stack (JETZT MIT UNITY)
|
||||||
echo "needs to be implemented"
|
# Wir müssen unity/unity.c mitkompilieren und -Iunity nutzen
|
||||||
|
test_stack: test_stack.c stack.o $(unityfolder)/unity.c
|
||||||
|
$(CC) $(FLAGS) -Iunity test_stack.c stack.o $(unityfolder)/unity.c -o test_stack$(EXT)
|
||||||
|
|
||||||
# --------------------------
|
unitTests_stack: test_stack
|
||||||
|
./test_stack$(EXT)
|
||||||
|
test_numbers: test_numbers.c numbers.c bintree.c stack.c unity/unity.c
|
||||||
|
gcc -Wall -Wextra -std=c99 -Iunity \
|
||||||
|
-o test_numbers \
|
||||||
|
test_numbers.c numbers.c bintree.c stack.c unity/unity.c
|
||||||
|
unitTests_number: test_numbers
|
||||||
|
./test_numbers
|
||||||
|
|
||||||
|
#-------------------------
|
||||||
# Clean
|
# Clean
|
||||||
# --------------------------
|
# --------------------------
|
||||||
clean:
|
clean:
|
||||||
ifeq ($(OS),Windows_NT)
|
ifeq ($(OS),Windows_NT)
|
||||||
del /f *.o doble
|
del /f *.o doble.exe test_stack.exe test_numbers.exe
|
||||||
else
|
else
|
||||||
rm -f *.o doble
|
rm -f *.o doble
|
||||||
endif
|
endif
|
||||||
87
numbers.c
87
numbers.c
@ -11,16 +11,93 @@
|
|||||||
* Duplizieren eines zufälligen Eintrags im Array.
|
* Duplizieren eines zufälligen Eintrags im Array.
|
||||||
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
||||||
|
|
||||||
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
|
//Vergleichsfunktion von qsort
|
||||||
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
|
static int compareUnsignedInt(const void *a, const void *b)
|
||||||
// creating random numbers.
|
{
|
||||||
|
const unsigned int *x = (const unsigned int *)a;
|
||||||
|
const unsigned int *y = (const unsigned int *)b;
|
||||||
|
|
||||||
|
if (*x < *y) return -1;
|
||||||
|
if (*x > *y) return 1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Mischen des Arrays
|
||||||
|
static void shuffleArray(unsigned int *array, unsigned int n)
|
||||||
|
{
|
||||||
|
if (n > 1)
|
||||||
|
{
|
||||||
|
for (unsigned int i = n - 1; i > 0; i--)
|
||||||
|
{
|
||||||
|
unsigned int j = rand() % (i + 1);
|
||||||
|
unsigned int temp = array[i];
|
||||||
|
array[i] = array[j];
|
||||||
|
array[j] = temp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//Wenn weniger als zwei Zahlen
|
||||||
unsigned int *createNumbers(unsigned int len)
|
unsigned int *createNumbers(unsigned int len)
|
||||||
{
|
{
|
||||||
|
if (len < 2) return NULL;
|
||||||
|
|
||||||
|
//Dynamisches Array
|
||||||
|
unsigned int *numbers = malloc(len * sizeof(unsigned int));
|
||||||
|
if (numbers == NULL) return NULL;
|
||||||
|
//Variabelen für den Binärbaum
|
||||||
|
TreeNode *root = NULL;
|
||||||
|
int isDuplicate = 0;
|
||||||
|
unsigned int count = 0;
|
||||||
|
|
||||||
|
|
||||||
|
while (count < len - 1)
|
||||||
|
{ //Zufallszahlen generieren
|
||||||
|
unsigned int value = (rand() % (2 * len)) + 1;
|
||||||
|
|
||||||
|
|
||||||
|
root = addToTree(root, &value, sizeof(unsigned int), compareUnsignedInt, &isDuplicate);
|
||||||
|
|
||||||
|
if (isDuplicate == 0)
|
||||||
|
{ //in array schreiben falls kein Duplikat
|
||||||
|
numbers[count] = value;
|
||||||
|
count++;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns only the only number in numbers which is present twice. Returns zero on errors.
|
}
|
||||||
|
//Duplikat erzeugen
|
||||||
|
unsigned int randomIndex = rand() % (len - 1);
|
||||||
|
unsigned int duplicateValue = numbers[randomIndex];
|
||||||
|
numbers[len - 1] = duplicateValue;
|
||||||
|
root = addToTree(root, &duplicateValue, sizeof(unsigned int), compareUnsignedInt, NULL);
|
||||||
|
//Array mischen damit duplikat nicht am Ende immer ist
|
||||||
|
shuffleArray(numbers, len);
|
||||||
|
|
||||||
|
clearTree(root);
|
||||||
|
return numbers;
|
||||||
|
}
|
||||||
|
//get Duplicate
|
||||||
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
|
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
|
||||||
{
|
{
|
||||||
|
if (numbers == NULL || len < 2) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
//Kopie vom Array anlegen
|
||||||
|
unsigned int *copy = malloc(len * sizeof(unsigned int));
|
||||||
|
|
||||||
|
if (copy == NULL) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
memcpy(copy, numbers, len * sizeof(unsigned int));
|
||||||
|
qsort(copy, len, sizeof(unsigned int), compareUnsignedInt);
|
||||||
|
unsigned int duplicate = 0;
|
||||||
|
//Duplikat finden
|
||||||
|
for (unsigned int i = 0; i + 1 < len; ++i) {
|
||||||
|
if (copy[i] == copy[i + 1]) {
|
||||||
|
duplicate = copy[i];
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//Speicher freigeben
|
||||||
|
free(copy);
|
||||||
|
return duplicate;
|
||||||
}
|
}
|
||||||
49
stack.c
49
stack.c
@ -8,26 +8,69 @@
|
|||||||
* `clearStack`: gibt den gesamten Speicher frei. */
|
* `clearStack`: gibt den gesamten Speicher frei. */
|
||||||
|
|
||||||
// Pushes data as pointer onto the stack.
|
// Pushes data as pointer onto the stack.
|
||||||
|
|
||||||
|
// Hilfsfunktion
|
||||||
|
static StackNode *createStackNode(void *data)
|
||||||
|
{
|
||||||
|
// 1. Container reservieren
|
||||||
|
StackNode *newNode = calloc(1, sizeof(StackNode));
|
||||||
|
if(!newNode) return NULL;
|
||||||
|
|
||||||
|
// 2. WICHTIG: Wir speichern nur den Zeiger (die Adresse)!
|
||||||
|
// Wir machen KEIN zweites malloc für die Daten.
|
||||||
|
// Der Stack "besitzt" die Daten nicht, er referenziert sie nur.
|
||||||
|
newNode->data = data;
|
||||||
|
|
||||||
|
newNode->nextNode = NULL;
|
||||||
|
return newNode;
|
||||||
|
}
|
||||||
|
|
||||||
StackNode *push(StackNode *stack, void *data)
|
StackNode *push(StackNode *stack, void *data)
|
||||||
{
|
{
|
||||||
|
// Neue Node erstellen
|
||||||
|
StackNode *newNode = createStackNode(data);
|
||||||
|
if (!newNode) {
|
||||||
|
return stack; // Fehlerfall: Stack bleibt unverändert (oder Fehlerbehandlung)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Verkettung: Die neue Node zeigt auf den alten Kopf
|
||||||
|
newNode->nextNode = stack;
|
||||||
|
|
||||||
|
// Die neue Node ist der neue Kopf (Rückgabewert)
|
||||||
|
return newNode;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
||||||
// freed by caller.)
|
// freed by caller.)
|
||||||
StackNode *pop(StackNode *stack)
|
StackNode *pop(StackNode *stack)
|
||||||
{
|
{
|
||||||
|
if(stack)
|
||||||
|
{
|
||||||
|
StackNode* tempNode = stack -> nextNode;
|
||||||
|
free(stack);
|
||||||
|
return tempNode;
|
||||||
|
}
|
||||||
|
return stack;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the data of the top element.
|
// Returns the data of the top element.
|
||||||
void *top(StackNode *stack)
|
void *top(StackNode *stack)
|
||||||
{
|
{
|
||||||
|
if(stack)
|
||||||
|
{
|
||||||
|
return stack ->data;
|
||||||
|
}
|
||||||
|
return NULL;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Clears stack and releases all memory.
|
// Clears stack and releases all memory.
|
||||||
void clearStack(StackNode *stack)
|
void clearStack(StackNode *stack)
|
||||||
{
|
{
|
||||||
|
StackNode *temp = NULL;
|
||||||
|
while(stack)
|
||||||
|
{
|
||||||
|
temp = stack -> nextNode;
|
||||||
|
free(stack);
|
||||||
|
stack = temp;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
6
stack.h
6
stack.h
@ -9,6 +9,12 @@ The latest element is taken from the stack. */
|
|||||||
|
|
||||||
//TODO: passenden Datentyp als struct anlegen
|
//TODO: passenden Datentyp als struct anlegen
|
||||||
|
|
||||||
|
typedef struct node
|
||||||
|
{
|
||||||
|
void *data;
|
||||||
|
struct node* nextNode;
|
||||||
|
} StackNode;
|
||||||
|
|
||||||
// Pushes data as pointer onto the stack.
|
// Pushes data as pointer onto the stack.
|
||||||
StackNode *push(StackNode *stack, void *data);
|
StackNode *push(StackNode *stack, void *data);
|
||||||
|
|
||||||
|
|||||||
92
test_numbers.c
Normal file
92
test_numbers.c
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
#include "unity/unity.h"
|
||||||
|
#include "numbers.h"
|
||||||
|
|
||||||
|
void setUp(void)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void tearDown(void)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
static unsigned int countOccurrences(const unsigned int *numbers, unsigned int len, unsigned int value)
|
||||||
|
{
|
||||||
|
unsigned int count = 0;
|
||||||
|
for (unsigned int i = 0; i < len; ++i) {
|
||||||
|
if (numbers[i] == value) {
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_createNumbers_returns_non_null(void)
|
||||||
|
{
|
||||||
|
unsigned int len = 20;
|
||||||
|
unsigned int *numbers = createNumbers(len);
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(numbers);
|
||||||
|
|
||||||
|
free(numbers);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_createNumbers_value_range(void)
|
||||||
|
{
|
||||||
|
unsigned int len = 30;
|
||||||
|
unsigned int *numbers = createNumbers(len);
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(numbers);
|
||||||
|
|
||||||
|
for (unsigned int i = 0; i < len; ++i) {
|
||||||
|
TEST_ASSERT_TRUE(numbers[i] >= 1);
|
||||||
|
TEST_ASSERT_TRUE(numbers[i] <= 2 * len);
|
||||||
|
}
|
||||||
|
|
||||||
|
free(numbers);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_getDuplicate_finds_exactly_one_duplicate(void)
|
||||||
|
{
|
||||||
|
unsigned int len = 25;
|
||||||
|
unsigned int *numbers = createNumbers(len);
|
||||||
|
|
||||||
|
TEST_ASSERT_NOT_NULL(numbers);
|
||||||
|
|
||||||
|
unsigned int duplicate = getDuplicate(numbers, len);
|
||||||
|
TEST_ASSERT_NOT_EQUAL_UINT(0, duplicate);
|
||||||
|
|
||||||
|
unsigned int occurrences =
|
||||||
|
countOccurrences(numbers, len, duplicate);
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_UINT(2, occurrences);
|
||||||
|
|
||||||
|
free(numbers);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_error_cases(void)
|
||||||
|
{
|
||||||
|
TEST_ASSERT_NULL(createNumbers(0));
|
||||||
|
TEST_ASSERT_NULL(createNumbers(1));
|
||||||
|
|
||||||
|
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(NULL, 10));
|
||||||
|
|
||||||
|
unsigned int oneElement[1] = { 42 };
|
||||||
|
TEST_ASSERT_EQUAL_UINT(0, getDuplicate(oneElement, 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(void)
|
||||||
|
{
|
||||||
|
srand((unsigned int) time(NULL));
|
||||||
|
|
||||||
|
UNITY_BEGIN();
|
||||||
|
|
||||||
|
RUN_TEST(test_createNumbers_returns_non_null);
|
||||||
|
RUN_TEST(test_createNumbers_value_range);
|
||||||
|
RUN_TEST(test_getDuplicate_finds_exactly_one_duplicate);
|
||||||
|
RUN_TEST(test_error_cases);
|
||||||
|
|
||||||
|
return UNITY_END();
|
||||||
|
}
|
||||||
72
test_stack.c
Normal file
72
test_stack.c
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
#include <stdlib.h>
|
||||||
|
#include "unity.h"
|
||||||
|
#include "stack.h"
|
||||||
|
|
||||||
|
// Globale Variablen für den Test (optional, aber praktisch hier)
|
||||||
|
StackNode *stack = NULL;
|
||||||
|
int *a;
|
||||||
|
int *b;
|
||||||
|
|
||||||
|
void setUp(void) {
|
||||||
|
stack = NULL;
|
||||||
|
// Wir reservieren Speicher für jedes Test-Szenario frisch
|
||||||
|
a = malloc(sizeof(int));
|
||||||
|
b = malloc(sizeof(int));
|
||||||
|
*a = 10;
|
||||||
|
*b = 20;
|
||||||
|
}
|
||||||
|
|
||||||
|
void tearDown(void) {
|
||||||
|
// Aufräumen nach jedem Test
|
||||||
|
if (stack != NULL) {
|
||||||
|
clearStack(stack);
|
||||||
|
stack = NULL;
|
||||||
|
}
|
||||||
|
// Falls der Stack die Daten NICHT freest, müssen wir es tun:
|
||||||
|
// Hinweis: Wenn clearStack die Daten freest, darfst du hier a und b nicht free-en!
|
||||||
|
// Ich gehe davon aus, der Stack freest die Daten NICHT.
|
||||||
|
free(a);
|
||||||
|
free(b);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_push_and_top(void) {
|
||||||
|
stack = push(stack, a);
|
||||||
|
TEST_ASSERT_NOT_NULL(stack);
|
||||||
|
TEST_ASSERT_EQUAL_INT(10, *(int*)top(stack));
|
||||||
|
|
||||||
|
stack = push(stack, b);
|
||||||
|
TEST_ASSERT_EQUAL_INT(20, *(int*)top(stack));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_pop_logic(void) {
|
||||||
|
// Vorbereitung
|
||||||
|
stack = push(stack, a);
|
||||||
|
stack = push(stack, b);
|
||||||
|
|
||||||
|
// Test Pop 1
|
||||||
|
stack = pop(stack);
|
||||||
|
TEST_ASSERT_NOT_NULL(stack);
|
||||||
|
TEST_ASSERT_EQUAL_INT(10, *(int*)top(stack));
|
||||||
|
|
||||||
|
// Test Pop 2 (Stack sollte leer werden)
|
||||||
|
stack = pop(stack);
|
||||||
|
TEST_ASSERT_NULL(stack);
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_clearStack(void) {
|
||||||
|
stack = push(stack, a);
|
||||||
|
stack = push(stack, b);
|
||||||
|
|
||||||
|
clearStack(stack);
|
||||||
|
stack = NULL; // Muss im Code manuell gemacht werden, wenn clearStack void ist
|
||||||
|
|
||||||
|
TEST_ASSERT_NULL(stack);
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(void) {
|
||||||
|
UNITY_BEGIN();
|
||||||
|
RUN_TEST(test_push_and_top);
|
||||||
|
RUN_TEST(test_pop_logic);
|
||||||
|
RUN_TEST(test_clearStack);
|
||||||
|
return UNITY_END();
|
||||||
|
}
|
||||||
Loading…
x
Reference in New Issue
Block a user