Compare commits
16 Commits
main
...
simons_weg
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fc3508140a | ||
|
|
a3b951d0a9 | ||
| f8c297f84d | |||
| 5b576589e3 | |||
| bf0a0b3f40 | |||
| d54dd3eb6f | |||
|
|
8051686a37 | ||
|
|
39965a95c4 | ||
|
|
8b0fa4601a | ||
|
|
f59489779b | ||
| 31a76162ee | |||
| b76ffa054a | |||
|
|
4cfe6d9c50 | ||
|
|
82c72eaf81 | ||
|
|
a027c070d2 | ||
|
|
94517bf236 |
11
.gitignore
vendored
Normal file
11
.gitignore
vendored
Normal file
@ -0,0 +1,11 @@
|
||||
doble_initial.exe
|
||||
highscores.txt
|
||||
runStackTest.exe
|
||||
stack.o
|
||||
runNumbersTest.exe
|
||||
numbers.o
|
||||
.vscode/launch.json
|
||||
.vscode/settings.json
|
||||
*.o
|
||||
*.exe
|
||||
runBintreeTest
|
||||
48
bintree.c
48
bintree.c
@ -2,17 +2,36 @@
|
||||
#include "stack.h"
|
||||
#include "bintree.h"
|
||||
|
||||
//TODO: binären Suchbaum implementieren
|
||||
// TODO: binären Suchbaum implementieren
|
||||
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
||||
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
||||
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
||||
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
||||
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
||||
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
||||
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
||||
|
||||
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
||||
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
||||
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
||||
{
|
||||
TreeNode newNode = {data, NULL, NULL};
|
||||
|
||||
|
||||
if(root == NULL)
|
||||
{
|
||||
return &newNode;
|
||||
}
|
||||
|
||||
if (data < root->data)
|
||||
{
|
||||
root->left = addToTree(root->left, data, dataSize,compareFct, isDuplicate);
|
||||
}
|
||||
else if(data > root->data)
|
||||
{
|
||||
root->right = addToTree(root->right, data, dataSize,compareFct, isDuplicate);
|
||||
}
|
||||
|
||||
|
||||
|
||||
return root;
|
||||
}
|
||||
|
||||
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
||||
@ -26,11 +45,28 @@ void *nextTreeData(TreeNode *root)
|
||||
// Releases all memory resources (including data copies).
|
||||
void clearTree(TreeNode *root)
|
||||
{
|
||||
|
||||
if (root == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
if (root->left != NULL)
|
||||
{
|
||||
clearTree(root->left);
|
||||
free(root->left);
|
||||
root->left = NULL;
|
||||
}
|
||||
if (root->right != NULL)
|
||||
{
|
||||
clearTree(root->right);
|
||||
free(root->right);
|
||||
root->right = NULL;
|
||||
}
|
||||
root = NULL;
|
||||
}
|
||||
|
||||
// Returns the number of entries in the tree given by root.
|
||||
unsigned int treeSize(const TreeNode *root)
|
||||
{
|
||||
|
||||
return root == NULL ? 0 : treeSize(root->left) + treeSize(root->right) + 1;
|
||||
}
|
||||
@ -1 +0,0 @@
|
||||
player1;3999
|
||||
108
makefile
108
makefile
@ -1,49 +1,61 @@
|
||||
CC = gcc
|
||||
FLAGS = -g -Wall -lm
|
||||
|
||||
ifeq ($(OS),Windows_NT)
|
||||
include makefile_windows.variables
|
||||
else
|
||||
UNAME = $(shell uname)
|
||||
ifeq ($(UNAME),Linux)
|
||||
include makefile_linux.variables
|
||||
else
|
||||
include makefile_mac.variables
|
||||
endif
|
||||
endif
|
||||
|
||||
raylibfolder = ./raylib
|
||||
unityfolder = ./unity
|
||||
|
||||
# --------------------------
|
||||
# Initiales Programm bauen (zum ausprobieren)
|
||||
# --------------------------
|
||||
doble_initial:
|
||||
$(CC) -o doble_initial $(BINARIES)/libdoble_complete.a
|
||||
|
||||
# --------------------------
|
||||
# Selbst implementiertes Programm bauen
|
||||
# --------------------------
|
||||
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
|
||||
|
||||
doble : main.o $(program_obj_files)
|
||||
$(CC) $(FLAGS) $^ -o doble
|
||||
|
||||
$(program_obj_filesobj_files): %.o: %.c
|
||||
$(CC) -c $(FLAGS) $^ -o $@
|
||||
|
||||
# --------------------------
|
||||
# Unit Tests
|
||||
# --------------------------
|
||||
unitTests:
|
||||
echo "needs to be implemented"
|
||||
|
||||
# --------------------------
|
||||
# Clean
|
||||
# --------------------------
|
||||
clean:
|
||||
ifeq ($(OS),Windows_NT)
|
||||
del /f *.o doble
|
||||
else
|
||||
rm -f *.o doble
|
||||
CC = gcc
|
||||
FLAGS = -g -Wall -lm
|
||||
|
||||
ifeq ($(OS),Windows_NT)
|
||||
include makefile_windows.variables
|
||||
else
|
||||
UNAME = $(shell uname)
|
||||
ifeq ($(UNAME),Linux)
|
||||
include makefile_linux.variables
|
||||
else
|
||||
include makefile_mac.variables
|
||||
endif
|
||||
endif
|
||||
|
||||
raylibfolder = ./raylib
|
||||
unityfolder = ./unity
|
||||
|
||||
# --------------------------
|
||||
# Initiales Programm bauen (zum ausprobieren)
|
||||
# --------------------------
|
||||
doble_initial:
|
||||
$(CC) -o doble_initial $(BINARIES)/libdoble_complete.a
|
||||
|
||||
# --------------------------
|
||||
# Selbst implementiertes Programm bauen
|
||||
# --------------------------
|
||||
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
|
||||
|
||||
doble : main.o $(program_obj_files)
|
||||
$(CC) $(FLAGS) $^ -o doble
|
||||
|
||||
$(program_obj_filesobj_files): %.o: %.c
|
||||
$(CC) -c $(FLAGS) $^ -o $@
|
||||
|
||||
# --------------------------
|
||||
# Unit Tests
|
||||
# --------------------------
|
||||
unitTests: stack.o test_stack.c $(unityfolder)/unity.c
|
||||
$(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c
|
||||
|
||||
# --------------------------
|
||||
# numbers.c Tests
|
||||
# --------------------------
|
||||
numbersTests: numbers.o test_numbers.c $(unityfolder)/unity.c
|
||||
$(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o $(unityfolder)/unity.c
|
||||
|
||||
# --------------------------
|
||||
# bintree.c Tests
|
||||
# --------------------------
|
||||
bintreeTests: bintree.o test_bintree.c $(unityfolder)/unity.c
|
||||
$(CC) $(FLAGS) -I$(unityfolder) -o runBintreeTest test_bintree.c bintree.o $(unityfolder)/unity.c
|
||||
|
||||
# --------------------------
|
||||
# Clean
|
||||
# --------------------------
|
||||
clean:
|
||||
ifeq ($(OS),Windows_NT)
|
||||
del /f *.o doble
|
||||
else
|
||||
rm -f *.o doble
|
||||
endif
|
||||
170
numbers.c
170
numbers.c
@ -5,22 +5,184 @@
|
||||
#include "numbers.h"
|
||||
#include "bintree.h"
|
||||
|
||||
//TODO: getDuplicate und createNumbers implementieren
|
||||
// TODO: getDuplicate und createNumbers implementieren
|
||||
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
|
||||
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
|
||||
* Duplizieren eines zufälligen Eintrags im Array.
|
||||
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
||||
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
|
||||
* Duplizieren eines zufälligen Eintrags im Array.
|
||||
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
|
||||
|
||||
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
|
||||
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
|
||||
// creating random numbers.
|
||||
unsigned int checkArray(unsigned int *array, unsigned int len, unsigned int number)
|
||||
{
|
||||
int free = 1;
|
||||
|
||||
for (int i = 0; i < len; i++)
|
||||
{
|
||||
if (array[i] == number)
|
||||
{
|
||||
free = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return free;
|
||||
}
|
||||
|
||||
unsigned int *createNumbers(unsigned int len)
|
||||
{
|
||||
srand(time(NULL));
|
||||
unsigned int *array = (unsigned int *)malloc(len * sizeof(unsigned int));
|
||||
int randomNr, randomPos, counter;
|
||||
|
||||
if (array == NULL)
|
||||
{
|
||||
return NULL; // Fehler
|
||||
}
|
||||
|
||||
for (int i = 0; i < len; i++)
|
||||
{
|
||||
array[i] = 0;
|
||||
}
|
||||
|
||||
randomNr = rand() % (2 * len + 1);
|
||||
randomPos = rand() % (len);
|
||||
array[randomPos] = randomNr;
|
||||
do
|
||||
{
|
||||
randomPos = rand() % (len);
|
||||
} while (array[randomPos] != 0);
|
||||
array[randomPos] = randomNr;
|
||||
|
||||
while (!checkArray(array, len, 0))
|
||||
{
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
if (counter == len)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
randomPos = rand() % (len);
|
||||
counter++;
|
||||
} while (array[randomPos] != 0);
|
||||
|
||||
counter = 0;
|
||||
do
|
||||
{
|
||||
if (counter == len * 2)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
randomNr = rand() % (2 * len + 1);
|
||||
counter++;
|
||||
} while (!checkArray(array, len, randomNr));
|
||||
|
||||
array[randomPos] = randomNr;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
void merge(unsigned int arr[], unsigned int left, unsigned int mid, unsigned int right)
|
||||
{
|
||||
unsigned int i, j, k;
|
||||
unsigned int n1 = mid - left + 1;
|
||||
unsigned int n2 = right - mid;
|
||||
|
||||
// Create temporary arrays
|
||||
unsigned int leftArr[n1], rightArr[n2];
|
||||
|
||||
// Copy data to temporary arrays
|
||||
for (i = 0; i < n1; i++)
|
||||
leftArr[i] = arr[left + i];
|
||||
for (j = 0; j < n2; j++)
|
||||
rightArr[j] = arr[mid + 1 + j];
|
||||
|
||||
// Merge the temporary arrays back into arr[left..right]
|
||||
i = 0;
|
||||
j = 0;
|
||||
k = left;
|
||||
while (i < n1 && j < n2)
|
||||
{
|
||||
if (leftArr[i] <= rightArr[j])
|
||||
{
|
||||
arr[k] = leftArr[i];
|
||||
i++;
|
||||
}
|
||||
else
|
||||
{
|
||||
arr[k] = rightArr[j];
|
||||
j++;
|
||||
}
|
||||
k++;
|
||||
}
|
||||
|
||||
// Copy the remaining elements of leftArr[], if any
|
||||
while (i < n1)
|
||||
{
|
||||
arr[k] = leftArr[i];
|
||||
i++;
|
||||
k++;
|
||||
}
|
||||
|
||||
// Copy the remaining elements of rightArr[], if any
|
||||
while (j < n2)
|
||||
{
|
||||
arr[k] = rightArr[j];
|
||||
j++;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
|
||||
void mergeSort(unsigned int arr[], unsigned int left, unsigned int right)
|
||||
{
|
||||
if (left < right)
|
||||
{
|
||||
|
||||
// Calculate the midpoint
|
||||
unsigned int mid = left + (right - left) / 2;
|
||||
|
||||
// Sort first and second halves
|
||||
mergeSort(arr, left, mid);
|
||||
mergeSort(arr, mid + 1, right);
|
||||
|
||||
// Merge the sorted halves
|
||||
merge(arr, left, mid, right);
|
||||
}
|
||||
}
|
||||
|
||||
// Returns only the only number in numbers which is present twice. Returns zero on errors.
|
||||
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
|
||||
{
|
||||
unsigned int temp[len];
|
||||
unsigned int duplicate = 0;
|
||||
|
||||
/*if(numbers == NULL || (sizeof(numbers) / sizeof(typeof(numbers)) != len))
|
||||
{
|
||||
return 0;S
|
||||
}*/
|
||||
|
||||
for (int i = 0; i < len; i++)
|
||||
{
|
||||
temp[i] = numbers[i];
|
||||
}
|
||||
|
||||
// Sorting arr using mergesort
|
||||
mergeSort(temp, 0, len - 1);
|
||||
|
||||
for (int i = 0; i < len - 1; i++)
|
||||
{
|
||||
duplicate = temp[i];
|
||||
if (duplicate == temp[i + 1])
|
||||
{
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return duplicate;
|
||||
}
|
||||
66
stack.c
66
stack.c
@ -1,33 +1,91 @@
|
||||
#include <stdlib.h>
|
||||
#include "stack.h"
|
||||
|
||||
//TODO: grundlegende Stackfunktionen implementieren:
|
||||
// TODO: grundlegende Stackfunktionen implementieren:
|
||||
/* * `push`: legt ein Element oben auf den Stack,
|
||||
* `pop`: entfernt das oberste Element,
|
||||
* `top`: liefert das oberste Element zurück,
|
||||
* `clearStack`: gibt den gesamten Speicher frei. */
|
||||
* `pop`: entfernt das oberste Element,
|
||||
* `top`: liefert das oberste Element zurück,
|
||||
* `clearStack`: gibt den gesamten Speicher frei. */
|
||||
|
||||
// Pushes data as pointer onto the stack.
|
||||
StackNode *push(StackNode *stack, void *data)
|
||||
{
|
||||
StackNode *tempNode, *newNode;
|
||||
|
||||
newNode = malloc(sizeof(StackNode));
|
||||
newNode->value = *(int *)data;
|
||||
newNode->next = NULL;
|
||||
|
||||
if (stack == NULL)
|
||||
{
|
||||
stack = newNode;
|
||||
return stack;
|
||||
}
|
||||
|
||||
tempNode = stack;
|
||||
while (tempNode->next != NULL)
|
||||
{
|
||||
tempNode = tempNode->next;
|
||||
}
|
||||
tempNode->next = newNode;
|
||||
|
||||
return stack;
|
||||
}
|
||||
|
||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
||||
// freed by caller.)
|
||||
StackNode *pop(StackNode *stack)
|
||||
{
|
||||
StackNode *tempNode;
|
||||
|
||||
if (stack == NULL)
|
||||
{
|
||||
return stack;
|
||||
}
|
||||
|
||||
tempNode = stack;
|
||||
while (tempNode->next->next != NULL)
|
||||
{
|
||||
tempNode = tempNode->next;
|
||||
}
|
||||
free(tempNode->next);
|
||||
tempNode->next = NULL;
|
||||
|
||||
return stack;
|
||||
}
|
||||
|
||||
// Returns the data of the top element.
|
||||
void *top(StackNode *stack)
|
||||
{
|
||||
StackNode *tempNode;
|
||||
|
||||
if (stack == NULL)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
tempNode = stack;
|
||||
while (tempNode->next != NULL)
|
||||
{
|
||||
tempNode = tempNode->next;
|
||||
}
|
||||
|
||||
return &tempNode->value;
|
||||
}
|
||||
|
||||
// Clears stack and releases all memory.
|
||||
void clearStack(StackNode *stack)
|
||||
{
|
||||
StackNode *tempNode;
|
||||
|
||||
if (stack == NULL)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
tempNode = stack;
|
||||
while (tempNode != NULL)
|
||||
{
|
||||
tempNode = pop(tempNode);
|
||||
}
|
||||
}
|
||||
54
stack.h
54
stack.h
@ -1,25 +1,29 @@
|
||||
#ifndef STACK_H
|
||||
#define STACK_H
|
||||
|
||||
/* A stack is a special type of queue which uses the LIFO (last in, first out) principle.
|
||||
This means that with each new element all other elements are pushed deeper into the stack.
|
||||
The latest element is taken from the stack. */
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
//TODO: passenden Datentyp als struct anlegen
|
||||
|
||||
// Pushes data as pointer onto the stack.
|
||||
StackNode *push(StackNode *stack, void *data);
|
||||
|
||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
||||
// freed by caller.)
|
||||
StackNode *pop(StackNode *stack);
|
||||
|
||||
// Returns the data of the top element.
|
||||
void *top(StackNode *stack);
|
||||
|
||||
// Clears stack and releases all memory.
|
||||
void clearStack(StackNode *stack);
|
||||
|
||||
#endif
|
||||
#ifndef STACK_H
|
||||
#define STACK_H
|
||||
|
||||
/* A stack is a special type of queue which uses the LIFO (last in, first out) principle.
|
||||
This means that with each new element all other elements are pushed deeper into the stack.
|
||||
The latest element is taken from the stack. */
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
//TODO: passenden Datentyp als struct anlegen
|
||||
typedef struct Node {
|
||||
int value;
|
||||
struct Node* next;
|
||||
} StackNode;
|
||||
|
||||
// Pushes data as pointer onto the stack.
|
||||
StackNode *push(StackNode *stack, void *data);
|
||||
|
||||
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
|
||||
// freed by caller.)
|
||||
StackNode *pop(StackNode *stack);
|
||||
|
||||
// Returns the data of the top element.
|
||||
void *top(StackNode *stack);
|
||||
|
||||
// Clears stack and releases all memory.
|
||||
void clearStack(StackNode *stack);
|
||||
|
||||
#endif
|
||||
|
||||
80
test_bintree.c
Normal file
80
test_bintree.c
Normal file
@ -0,0 +1,80 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "bintree.h"
|
||||
#include "unity.h"
|
||||
|
||||
|
||||
void sizeTest()
|
||||
{
|
||||
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
|
||||
int dataRoot = 2;
|
||||
int dataNode1 = 1;
|
||||
int dataNode2 = 3;
|
||||
|
||||
root->data = &dataRoot;
|
||||
root->left = (TreeNode *)node1;
|
||||
root->right = (TreeNode *)node2;
|
||||
|
||||
node1->data = &dataNode1;
|
||||
node1->left = NULL;
|
||||
node1->right = NULL;
|
||||
|
||||
node2->data = &dataNode2;
|
||||
node2->left = NULL;
|
||||
node2->right = NULL;
|
||||
|
||||
TEST_ASSERT_EQUAL_INT(3,treeSize(root));
|
||||
}
|
||||
|
||||
void clearTest()
|
||||
{
|
||||
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
|
||||
|
||||
int dataRoot = 2;
|
||||
int dataNode1 = 1;
|
||||
int dataNode2 = 3;
|
||||
|
||||
root->data = &dataRoot;
|
||||
root->left = (TreeNode *)node1;
|
||||
root->right = (TreeNode *)node2;
|
||||
|
||||
node1->data = &dataNode1;
|
||||
node1->left = NULL;
|
||||
node1->right = NULL;
|
||||
|
||||
node2->data = &dataNode2;
|
||||
node2->left = NULL;
|
||||
node2->right = NULL;
|
||||
|
||||
TreeNode *ptr = root;
|
||||
|
||||
clearTree(ptr);
|
||||
TEST_ASSERT_EQUAL_INT(0,treeSize(root));
|
||||
}
|
||||
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("============================\nNumbers tests\n============================\n");
|
||||
|
||||
RUN_TEST(sizeTest);
|
||||
RUN_TEST(clearTest);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
47
test_numbers.c
Normal file
47
test_numbers.c
Normal file
@ -0,0 +1,47 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "numbers.h"
|
||||
#include "unity.h"
|
||||
|
||||
void createNumbersTest()
|
||||
{
|
||||
unsigned int *array;
|
||||
unsigned int len = 6;
|
||||
|
||||
array = createNumbers(len);
|
||||
for (int i = 0; i < len; i++)
|
||||
{
|
||||
printf("%u ", array[i]);
|
||||
}
|
||||
printf("\n");
|
||||
TEST_ASSERT_NOT_NULL(array);
|
||||
}
|
||||
|
||||
void duplicateTest()
|
||||
{
|
||||
unsigned int array[6] = {1, 4, 5, 2, 3, 1};
|
||||
unsigned int len = 6;
|
||||
|
||||
TEST_ASSERT_EQUAL_INT(1, getDuplicate(array, len));
|
||||
}
|
||||
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("============================\nNumbers tests\n============================\n");
|
||||
RUN_TEST(createNumbersTest);
|
||||
RUN_TEST(duplicateTest);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
112
test_stack.c
Normal file
112
test_stack.c
Normal file
@ -0,0 +1,112 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "stack.h"
|
||||
#include "unity.h"
|
||||
|
||||
void test_push(void)
|
||||
{
|
||||
StackNode *testNode;
|
||||
int data = 1;
|
||||
|
||||
// Test für leeren Stack
|
||||
testNode = push(NULL, &data);
|
||||
TEST_ASSERT_NOT_NULL(&testNode);
|
||||
TEST_ASSERT_NULL(testNode->next);
|
||||
TEST_ASSERT_EQUAL_INT(1, testNode->value);
|
||||
|
||||
data = 2;
|
||||
|
||||
// Test für nicht leeren Stack
|
||||
testNode = push(testNode, &data);
|
||||
TEST_ASSERT_NOT_NULL(&testNode);
|
||||
TEST_ASSERT_NOT_NULL(testNode->next);
|
||||
TEST_ASSERT_NULL(testNode->next->next);
|
||||
TEST_ASSERT_EQUAL_INT(1, testNode->value);
|
||||
TEST_ASSERT_EQUAL_INT(2, testNode->next->value);
|
||||
}
|
||||
|
||||
StackNode* setup(int value, StackNode* next) {
|
||||
StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap
|
||||
if (node == NULL) {
|
||||
perror("malloc failed");
|
||||
exit(EXIT_FAILURE); // or handle the error differently
|
||||
}
|
||||
node->value = value;
|
||||
node->next = next;
|
||||
return node;
|
||||
}
|
||||
|
||||
void test_pop(void)
|
||||
{
|
||||
StackNode* node2 = setup(3, NULL);
|
||||
StackNode* node1 = setup(2, node2);
|
||||
StackNode* header = setup(1, node1);
|
||||
StackNode* temp;
|
||||
|
||||
temp = pop(header);
|
||||
int after = 0;
|
||||
while(temp)
|
||||
{
|
||||
after++;
|
||||
temp = temp->next;
|
||||
}
|
||||
|
||||
|
||||
TEST_ASSERT_EQUAL_INT(2, after);
|
||||
TEST_ASSERT_NULL(node1->next);
|
||||
}
|
||||
|
||||
void test_top(void)
|
||||
{
|
||||
StackNode* node2 = setup(3, NULL);
|
||||
StackNode* node1 = setup(2, node2);
|
||||
StackNode* header = setup(1, node1);
|
||||
|
||||
int data = *(int *)top(header);
|
||||
TEST_ASSERT_EQUAL_INT(node2->value, data);
|
||||
}
|
||||
|
||||
void test_clear()
|
||||
{
|
||||
StackNode* node2 = setup(3, NULL);
|
||||
StackNode* node1 = setup(2, node2);
|
||||
StackNode* header = setup(1, node1);
|
||||
StackNode* temp;
|
||||
|
||||
clearStack(header);
|
||||
temp = header;
|
||||
|
||||
int after = 0;
|
||||
while(temp)
|
||||
{
|
||||
after++;
|
||||
temp = temp->next;
|
||||
}
|
||||
|
||||
|
||||
TEST_ASSERT_NULL(after);
|
||||
}
|
||||
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("============================\nStack tests\n============================\n");
|
||||
|
||||
RUN_TEST(test_push);
|
||||
RUN_TEST(test_pop);
|
||||
RUN_TEST(test_top);
|
||||
RUN_TEST(test_clear);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
10
unittest.h
Normal file
10
unittest.h
Normal file
@ -0,0 +1,10 @@
|
||||
#ifndef UNITTTESTS_H
|
||||
#define UNITTTESTS_H
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
typedef int (*UnitTestType)(void);
|
||||
|
||||
#define RUN_UNIT_TEST(fct) printf("%80s: %d\n", #fct, fct())
|
||||
|
||||
#endif
|
||||
Loading…
x
Reference in New Issue
Block a user